
Statistics 252 “Practice” Midterm Solutions – Winter 2005

1. (a) Since
log f(y|θ) = 2 log(θ)− θ2y,

we find
∂2

∂θ2
log f(y|θ) =

−2
θ2
− 2y.

Thus,

I(θ) = −E
(
∂2

∂θ2
log f(Y |θ)

)
=

2
θ2

+ 2E(Y ) =
4
θ2

since E(Y ) = θ−2. (This is because Y ∼ Exp(θ−2).)

(b) Let Z = θ2Y so that

P (Z ≤ z) = P (Y ≤ θ−2z) =
∫ θ−2z

0
θ2e−θ

2y dy = 1− e−z.

Thus, we must find a and b so that∫ a

0
e−z dz = α1 and

∫ ∞
b

e−z dz = α2.

Computing the integrals we find a = − log(1− α1) and b = − log(α2). Hence,

1− (α1 + α2) = P (a ≤ Z ≤ b) = P (− log(1− α1) ≤ θ2Y ≤ − log(α2))

= P

(
− log(1− α1)

Y
≤ θ2 ≤ − log(α2)

Y

)
.

In other words, (
− log(1− α1)

Y
,
− log(α2)

Y

)
is a confidence interval for θ2 with coverage probability 1− (α1 + α2).

2. (a) The likelihood function is

L(θ) =
n∏
i=1

f(yi|θ) = (θ − 1)n
(

n∏
i=1

yi

)−θ
so that the log-likelihood function is

`(θ) = n log(θ − 1)− θ
n∑
i=1

log(yi).

Hence `′(θ) = 0 implies

0 =
n

θ − 1
−

n∑
i=1

log(yi).

Since
`′′(θ) = − n

(θ − 1)2
< 0,

we conclude that
θ̂MLE = 1 +

n
n∑
i=1

log(Yi)

.



(b) Since
log f(y|θ) = log(θ − 1)− θ log(y),

we find
∂2

∂θ2
log f(y|θ) =

−1
(θ − 1)2

.

Thus,

I(θ) = −E
(
∂2

∂θ2
log f(Y |θ)

)
=

1
(θ − 1)2

.

(c) An approximate 90% confidence interval for θ is given by

θ̂MLE ± 1.64
1√

n I(θ̂MLE)
.

Since n = 25 and
∑

log yi = 5, we conclude that

θ̂MLE = 1 +
25
5

= 6

and
I(θ̂MLE) =

1

(θ̂MLE − 1)2
=

1
25
.

Hence, an approximate 95% confidence interval for θ is

6± 1.64.

3. To find the method of moments estimators for λ and θ, we must solve the system of equations

E(Y ) = Y and E(Y 2) =
1
n

n∑
i=1

Y 2
i

Thus, some trivial algebra gives

θ̂MOM = Y and λ̂MOM =

√√√√√√
2n
n∑
i=1

Y 2
i

.

4. (a) Consider a population. A parameter is a number which summarizes the population. In gen-
eral, this number is unknown. In Stat 252, the most common example is when the population
is summarized in terms of a density function f(y|θ) which is parametrized by an unknown
parameter θ. An estimator, therefore, is a rule for calculating an estimate of the parameter
based on a random sample from the population. That is, if Y1, . . . , Yn constitute an iid col-
lection of random variables each with Yi ∼ f(y|θ), then any random variable g(Y1, ..., Yn) is
an estimator of θ. (Of course, we prefer to work with minimum variance unbiased estimators,
but that is not a requirement of the definition.)

(b) It is desirable to find unbiased estimators because by having an unbiased estimator we know
E(θ̂) = θ. Thus, the most likely “value” of θ̂ is θ. If we have the unbiased estimator with the
smallest variance, then the distribution of θ̂ is clustered as tightly as possible about its mean,
namely θ. Thus, the MVUE is the “most likely” of all unbiased estimators to “closest” to θ.



5. (a) If Y ∼ Unif(0, θ), then E(Y ) = θ/2 and Var(Y ) = θ2/12. Thus,

θ̂MOM = 2Y .

Since
E(θ̂MOM) = 2E(Y ) = 2E(Y1) = 2

θ

2
= θ

we conclude that θ̂MOM is an unbiased estimator of θ.

(b) In order to find E(θ̂MLE) we must find the density function of θ̂MLE. Now,

P (θ̂MLE ≤ t) =
[∫ t

0
θ−1 dy

]10

=
t10

θ10
, 0 ≤ t ≤ θ

so that f(t) = 10 θ−10 t9, 0 ≤ t ≤ θ. Thus,

E(θ̂MLE) =
∫ θ

0
10 θ−10 t10 dt =

10
11
θ.

Thus, an unbiased estimator of θ which is a function of the MLE is given by

θ̂B =
11
10

max(Y1, . . . , Y10).

Also, note that

E(θ̂2
MLE) =

∫ θ

0
10 θ−10 t11 dt =

10
12
θ2.

(c) From (a), we conclude

Var(θ̂MOM) = 4 Var(Y ) =
4
10

Var(Y1) =
4θ2

10 · 12
=
θ2

30
.

¿From (b), we conclude

Var(θ̂B) =
121
100

Var(max(Y1, . . . , Y10)) =
121
100

(
10
12
− 100

121

)
θ2 =

θ2

120
.

Thus,

eff(θ̂MOM, θ̂B) =
Var(θ̂B)

Var(θ̂MOM)
=

1
4
.

Since both θ̂MOM and θ̂B are unbiased, the one with the smaller variance is preferrable, namely
θ̂B.

(d) Since
log f(y|θ) = − log(θ),

we find
∂2

∂θ2
log f(y|θ) =

1
θ2

Thus,

I(θ) = −E
(
∂2

∂θ2
log f(Y |θ)

)
= − 1

θ2
.



(e) The Cramer-Rao inequality tells us that that if θ̂ is any unbiased estimator of θ based on
(Y1, . . . , Y10), then

Var(θ̂) ≥ 1
10 I(θ)

=
−θ2

10
.

Of course, for any random variable X, Var(X) ≥ 0. Thus, having a negative lower bound in
the C-R inequality is useless. It give us no new information.

The problem in this question arises from the fact that the density function of a uniform random
variable is discontinuous. Therefore, technically, the computation of the Fisher inequality is invalid.
My reason for asking you this question was to draw your attention to this important fact.


