Make sure that this examination has 11 numbered pages
 University of Regina
 Department of Mathematics \& Statistics
 Final Examination
 200510
 (April 22, 2005)

Statistics 252-001
Mathematical Statistics

Name: \qquad
Instructor: Michael Kozdron

Student Number:

\qquad
Time: 3 hours

Read all of the following information before starting the exam.

You have 3 hours to complete this exam. Please read all instructions carefully, and check your answers. Show all work neatly and in order, and clearly indicate your final answers. Answers must be justified whenever possible in order to earn full credit. Unless otherwise specified, no credit will be given for unsupported answers, even if your final answer is correct. Several problems require written explanations in context. Only complete solutions written in the context specified by the problem will be awarded full points, and points will be deducted for incoherent, incorrect, and/or irrelevant statements.

You may use standard notation; however, any new notations or abbreviations that you introduce must be clearly defined.

Calculators are permitted; however, you must still show all your work. You are also permitted to have $\boldsymbol{T} \boldsymbol{W O} 8.5 \times 11$ yellow pages of handwritten notes (double-sided) for your personal use. Other than these exceptions, no other aids are allowed.

Note that blank space is not an indication of a question's difficulty. The order of the test questions is essentially random; they are not intentionally written easiest-to-hardest.

This test has 11 numbered pages with $\mathbf{7}$ questions totalling 150 points. The number of points per question is indicated.

DO NOT WRITE BELOW THIS LINE

Problem 1	\square	Problem 2	\square	Problem 3
Problem 4	Problem 5	\square	Problem 6	\square

Problem 7 \qquad
\qquad

1. (40 points) Suppose that Y_{1}, \ldots, Y_{n} are independent and identically distributed random variables with each Y_{i} having density function

$$
f(y \mid \theta)=\frac{\theta^{2}}{y^{3}} \exp (-\theta / y)
$$

where $y>0$ and $\theta>0$. It is known that $\mathbb{E}\left(Y_{i}\right)=\theta$ and $\mathbb{E}\left(\frac{1}{Y_{i}}\right)=\frac{2}{\theta}$ for each $i=1, \ldots, n$.
(a) Determine $\hat{\theta}_{\text {MOM }}$, the method of moments estimator of θ.
(b) Compute the likelihood function $L(\theta)$ for this random sample.
(c) Show that the maximum likelihood estimator of θ is $\hat{\theta}_{\mathrm{MLE}}=\frac{2 n}{\sum_{i=1}^{n} \frac{1}{Y_{i}}}$.

Statistics 252-001
-2-
Final Examination 200510
Time: 3 hours

Name:
Student No.:
Section:
(d) Show that $\sum_{i=1}^{n} \frac{1}{Y_{i}}$ is a sufficient statistic for the estimation of θ.
(e) Explain why $\hat{\theta}_{\text {MLE }}$ must also be a sufficient statistic for the estimation of θ.
(f) Find the Fisher information $I(\theta)$ in a single observation from this density.
\qquad
(g) Using the standard approximation for the distribution of a maximum likelihood estimator based on the Fisher information, construct an approximate 90% confidence interval for θ.
(h) Verify that the generalized likelihood ratio test for the test of the hypothesis $H_{0}: \theta=\theta_{0}$ against $H_{A}: \theta \neq \theta_{0}$ has rejection region of the form

$$
\left\{\left(\sum_{i=1}^{n} \frac{1}{Y_{i}}\right)^{2 n} \exp \left(-\theta_{0} \sum_{i=1}^{n} \frac{1}{Y_{i}}\right) \leq C\right\}
$$

for some constant C.
\qquad
To answer (i) and (j) below, suppose that an observation of size $n=8$ produces

$$
\sum_{i=1}^{8} \frac{1}{Y_{i}}=10
$$

(i) Based on your confidence interval constructed in (g) and on the above data, can you reject the hypothesis $H_{0}: \theta=1$ in favour of $H_{A}: \theta \neq 1$ at the significance level $\alpha=0.10$?
(j) Based on your generalized likelihood ratio test constructed in (h) and on the above data, can you reject the hypothesis $H_{0}: \theta=1$ in favour of $H_{A}: \theta \neq 1$ at the significance level $\alpha=0.10$?

Student No.:
Section:
2. (14 points) Consider a random variable Y with density function

$$
f(y \mid \theta)=\frac{e^{(y-\theta)}}{\left[1+e^{(y-\theta)}\right]^{2}},
$$

where $-\infty<y<\infty$, and $-\infty<\theta<\infty$. Using the pivotal quantity $y-\theta$, verify that if $0<\alpha_{1}<1 / 2$ and $0<\alpha_{2}<1 / 2$, then

$$
\left(Y-\log \left(\frac{1-\alpha_{2}}{\alpha_{2}}\right), Y-\log \left(\frac{\alpha_{1}}{1-\alpha_{1}}\right)\right)
$$

is a confidence interval for θ with coverage probability $1-\left(\alpha_{1}+\alpha_{2}\right)$.

Student No.:
Section: \qquad
3. (24 points) An electrical circuit consists of three batteries X_{1}, X_{2}, X_{3} connected in series to a lightbulb Y. We model the battery lifetimes as independent and identically distributed Exponential (λ) random variables. Our experiment to measure the lifetime of the lightbulb is stopped when any one of the batteries fails. Hence, the only random variable we observe is $Y=\min \left\{X_{1}, X_{2}, X_{3}\right\}$.
(a) Determine the distribution of the random variable Y.
(b) Compute $\hat{\lambda}_{\text {MLE }}$, the maximum likelihood estimator of λ. Hint: Use the result of (a).

Final Examination 200510
Time: 3 hours

Student No.:
Section:
(c) Determine the mean square error of $\hat{\lambda}_{\text {MLE }}$.
(d) Use the Cramer-Rao lower bound to prove that $\hat{\lambda}_{\text {MLE }}$ is the minimum variance unbiased estimator of λ.
4. (16 points)
(a) Assume that the outcome of an experiment is a single random variable X. An 80% confidence interval for a parameter θ has the form $(X-1, X+2)$. From this, determine a rejection rule for testing $H_{0}: \theta=5$ against $H_{A}: \theta \neq 5$ at significance level 0.2.
(b) Let Y_{1} and Y_{2} be independent Uniform $(0, \theta)$ random variables. Consider testing $H_{0}: \theta=1$ against $H_{A}: \theta>1$ by rejecting H_{0} when $\max \left\{Y_{1}, Y_{2}\right\}>c$. Find c so that this test has significance level $\frac{19}{100}$. What is the power of this test (as a function of θ)?

Student No.:
Section:
5. (16 points)
(a) Suppose you have been asked to analyze a data set, and you are planning to use a particular estimator to estimate a parameter. Explain why it is important to determine (either exactly or approximately) the sampling distribution of this estimator.
(b) Suppose that you want to compare two simple hypotheses in light of a data set. You use a test with significance level $\alpha=0.05$. The data yield a test statistic for which you accept the null hypothesis (or, if you prefer, you do not reject the null hypothesis). You would like to use this result to argue that the null hypothesis is likely to be true. What additional information about the test might you want first? Explain.
\qquad
6. (16 points) Suppose that Y_{1}, \ldots, Y_{5} are independent and identically distributed $\mathcal{N}\left(\mu, \sigma^{2}\right)$ random variables. As usual, let

$$
\bar{Y}=\frac{1}{5} \sum_{i=1}^{5} Y_{i} \quad \text { and } \quad S^{2}=\frac{1}{4} \sum_{i=1}^{5}\left(Y_{i}-\bar{Y}\right)^{2} .
$$

It is known that $\mu=0$, but σ^{2} is unknown. You want to test $H_{0}: \sigma=1$ against $H_{A}: \sigma>1$ by rejecting H_{0} when $S^{2}>1.945$. (You may consider your calculations accurate to two decimal places when consulting the appropriate table(s).)
(a) Verify that this test has significance level $\alpha=0.10$.
(b) Using the test determined in (a), find the power of the test when $\sigma=2.7$.
\qquad
7. (24 points) The goal of this problem is to study the simple quadratic regression model. If the random variable Y is defined by

$$
Y=b_{0}+b_{1} x^{2}+\varepsilon,
$$

where ε is a random variable with mean 0 , and x is a real (i.e., not random) variable, then we say that Y follows the simple quadratic regression model. The least squares parabola is given by

$$
\hat{y}=\hat{b}_{0}+\hat{b}_{1} x^{2}
$$

If real variable inputs x_{1}, \ldots, x_{n} produce observations y_{1}, \ldots, y_{n}, respectively, then the least squares estimators \hat{b}_{0} and \hat{b}_{1} are chosen to minimize the sum of the squares of the errors

$$
\operatorname{SSE}\left(\hat{b}_{0}, \hat{b}_{1}\right)=\sum_{i=1}^{n}\left(y_{i}-\hat{y}_{i}\right)^{2}=\sum_{i=1}^{n}\left(y_{i}-\hat{b}_{0}-\hat{b}_{1} x_{i}^{2}\right)^{2} .
$$

Find \hat{b}_{0} and \hat{b}_{1}, the least squares estimators of b_{0} and b_{1}, respectively. (You do not need to check the second derivative test.)

