Stat 252.01 Winter 2005
Assignment \#9 Solutions
(11.56) For the quadratic model $Y=\beta_{0}+\beta_{1} x+\beta_{2} x^{2}+\varepsilon$ given in the problem, we know that the least squares estimators $\hat{\beta}_{i}$ can be found by solving the matrix equation

$$
\hat{\boldsymbol{\beta}}=\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime} \mathbf{Y}
$$

where

$$
\mathbf{Y}=\left[\begin{array}{l}
y_{1} \\
y_{2} \\
y_{3} \\
y_{4} \\
y_{5} \\
y_{6} \\
y_{7}
\end{array}\right] \quad \mathbf{X}=\left[\begin{array}{ccc}
1 & x_{1} & x_{1}^{2} \\
1 & x_{2} & x_{2}^{2} \\
1 & x_{3} & x_{3}^{2} \\
1 & x_{4} & x_{4}^{2} \\
1 & x_{5} & x_{5}^{2} \\
1 & x_{6} & x_{6}^{2} \\
1 & x_{7} & x_{7}^{2}
\end{array}\right] \quad \hat{\boldsymbol{\beta}}=\left[\begin{array}{l}
\hat{\beta}_{0} \\
\hat{\beta}_{1} \\
\hat{\beta}_{2}
\end{array}\right]
$$

From the data given in the problem, we have

$$
\mathbf{Y}=\left[\begin{array}{c}
1 \\
0 \\
0 \\
-1 \\
-1 \\
0 \\
0
\end{array}\right], \quad \mathbf{X}=\left[\begin{array}{ccc}
1 & -3 & 9 \\
1 & -2 & 4 \\
1 & -1 & 1 \\
1 & 0 & 0 \\
1 & 1 & 1 \\
1 & 2 & 4 \\
1 & 3 & 9
\end{array}\right]
$$

Hence,

$$
\mathbf{X}^{\prime} \mathbf{X}=\left[\begin{array}{ccccccc}
1 & 1 & 1 & 1 & 1 & 1 & 1 \\
-3 & -2 & -1 & 0 & 1 & 2 & 3 \\
9 & 4 & 1 & 0 & 1 & 4 & 9
\end{array}\right] \cdot\left[\begin{array}{ccc}
1 & -3 & 9 \\
1 & -2 & 4 \\
1 & -1 & 1 \\
1 & 0 & 0 \\
1 & 1 & 1 \\
1 & 2 & 4 \\
1 & 3 & 9
\end{array}\right]=\left[\begin{array}{ccc}
7 & 0 & 28 \\
0 & 28 & 0 \\
28 & 0 & 196
\end{array}\right]
$$

so that

$$
\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1}=\left[\begin{array}{ccc}
1 / 3 & 0 & -1 / 21 \\
0 & 1 / 28 & 0 \\
-1 / 21 & 0 & 1 / 84
\end{array}\right]
$$

Furthermore,

$$
\mathbf{X}^{\prime} \mathbf{Y}=\left[\begin{array}{ccccccc}
1 & 1 & 1 & 1 & 1 & 1 & 1 \\
-3 & -2 & -1 & 0 & 1 & 2 & 3 \\
9 & 4 & 1 & 0 & 1 & 4 & 9
\end{array}\right] \cdot\left[\begin{array}{c}
1 \\
0 \\
0 \\
-1 \\
-1 \\
0 \\
0
\end{array}\right]=\left[\begin{array}{c}
-1 \\
-4 \\
8
\end{array}\right]
$$

Finally, we can conclude that

$$
\hat{\boldsymbol{\beta}}=\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime} \mathbf{Y}=\left[\begin{array}{ccc}
1 / 3 & 0 & -1 / 21 \\
0 & 1 / 28 & 0 \\
-1 / 21 & 0 & 1 / 84
\end{array}\right] \cdot\left[\begin{array}{c}
-1 \\
-4 \\
8
\end{array}\right]=\left[\begin{array}{c}
-15 / 21 \\
-1 / 7 \\
1 / 7
\end{array}\right]
$$

Hence, the quadratic regression fitted to the data is given by

$$
\hat{y}=(-15 / 21)-(1 / 7) x+(1 / 7) x^{2} .
$$

2. (b) Referring to Problem \#5 on Midterm \#2, we see that

$$
\operatorname{SSE}\left(\beta_{0}, \beta_{1}\right)=\mathbb{E}\left[(Y-\hat{Y})^{2}\right]=\left(\mu_{y}-\beta_{0}-\beta_{1} \mu_{x}\right)^{2}+\sigma_{y}^{2}+\beta_{1}^{2} \sigma_{x}^{2}-2 \beta_{1} \sigma_{x y},
$$

from which we compute
$\frac{\partial}{\partial \beta_{0}} \operatorname{SSE}\left(\beta_{0}, \beta_{1}\right)=-2\left(\mu_{y}-\beta_{0}-\beta_{1} \mu_{x}\right)$ and $\frac{\partial}{\partial \beta_{1}} \operatorname{SSE}\left(\beta_{0}, \beta_{1}\right)=-2 \mu_{x}\left(\mu_{y}-\beta_{0}-\beta_{1} \mu_{x}\right)+2 \beta_{1} \sigma_{x}^{2}-2 \sigma_{x y}$.
Furthermore,

$$
\begin{gathered}
\frac{\partial^{2}}{\partial \beta_{0}^{2}} \operatorname{SSE}\left(\beta_{0}, \beta_{1}\right)=2, \frac{\partial^{2}}{\partial \beta_{1}^{2}} \operatorname{SSE}\left(\beta_{0}, \beta_{1}\right)=2 \mu_{x}^{2}+2 \sigma_{x}^{2}, \quad \text { and } \\
\frac{\partial^{2}}{\partial \beta_{0} \beta_{1}} \operatorname{SSE}\left(\beta_{0}, \beta_{1}\right)=\frac{\partial^{2}}{\partial \beta_{1} \beta_{0}} \operatorname{SSE}\left(\beta_{0}, \beta_{1}\right)=2 \mu_{x} .
\end{gathered}
$$

Since we have shown already that the partial derivatives equal zero when

$$
\beta_{0}=\mu_{y}-\beta_{1} \mu_{x}
$$

and

$$
\beta_{1}=\frac{\sigma_{x y}}{\sigma_{x}^{2}},
$$

in order for these to be the minimizing values of $\operatorname{SSE}\left(\beta_{0}, \beta_{1}\right)$ we must check the second derivative test. (A statement of this result can be found on the handout dated March 10.) Since,

$$
\frac{\partial^{2}}{\partial \beta_{0}^{2}} \operatorname{SSE}\left(\beta_{0}, \beta_{1}\right)=2>0
$$

and since

$$
\frac{\partial^{2}}{\partial \beta_{0}^{2}} \operatorname{SSE}\left(\beta_{0}, \beta_{1}\right) \cdot \frac{\partial^{2}}{\partial \beta_{1}^{2}} \operatorname{SSE}\left(\beta_{0}, \beta_{1}\right)-\left(\frac{\partial^{2}}{\partial \beta_{0} \beta_{1}} \operatorname{SSE}\left(\beta_{0}, \beta_{1}\right)\right)^{2}=2 \cdot\left(2 \mu_{x}^{2}+2 \sigma_{x}^{2}\right)-\left(2 \mu_{x}\right)^{2}=4 \sigma_{x}^{2}>0,
$$

we conclude by the second derivative test that β_{0} and β_{1} as given do minimize SSE.
2. (c) Consider the modified linear regression model described by Problem \#5 on Midterm \#2 which outlines a method of predicting the random variable Y based on information contained in another random variable X. In particular, the predictor of Y, called \hat{Y}, is assumed to be a linear function of X so that $\hat{Y}=\beta_{0}+\beta_{1} X$. The problem discusses one way of selecting the coefficients β_{i}, namely by choosing them to minimize the mean square error $\mathbb{E}\left[(Y-\hat{Y})^{2}\right]$. As shown on the Midterm, and in the exercise above, the minimizing values of β_{i} are given by

$$
\beta_{0}=\mu_{y}-\beta_{1} \mu_{x} \quad \text { and } \quad \beta_{1}=\frac{\sigma_{x y}}{\sigma_{x}^{2}}
$$

This implies that

$$
\hat{Y}=\mu_{y}-\frac{\sigma_{x y} \mu_{x}}{\sigma_{x}^{2}}+\frac{\sigma_{x y}}{\sigma_{x}^{2}} X .
$$

One thing to immediately notice is that the best linear predictor of Y (in the minimum mean square error sense) depends not only on the random variable X, but on some ancillary information about Y, namely its mean, μ_{y}; its variance, σ_{y}^{2}; and its covariance with $X, \sigma_{x y}$. Suppose, however, that $\operatorname{Cov}(X, Y)=0$. Then, in the notation of the problem at hand, $\sigma_{x y}=0$ so that

$$
\beta_{1}=\frac{\sigma_{x y}}{\sigma_{x}^{2}}=0 \quad \text { and } \quad \beta_{0}=\mu_{y}-\beta_{1} \mu_{x}=\mu_{y},
$$

and

$$
\hat{Y}=\mu_{y} .
$$

This says that the best linear predictor (in the mean square sense) of Y is now simply μ_{y}, the mean of Y. Notice, in particular, that knowledge of X has no bearing on prediction of Y. It is in this sense that uncorrelatedness is similar to independence. (Although, of course, dependent random variables may be uncorrelated.)
(11.81) Suppose that

$$
\mathbf{Y}=\left[Y_{1} Y_{2} \cdots Y_{n}\right] \text { and } \mathbb{1}=[11 \cdots 1]
$$

are both $1 \times n$ vectors. Then, we can write

$$
\bar{Y}=\frac{1}{n} \mathbb{1}^{\prime} \mathbf{Y}=[1 / n 1 / n \cdots 1 / n]\left[\begin{array}{c}
Y_{1} \\
Y_{2} \\
\vdots \\
Y_{n}
\end{array}\right] .
$$

In matrix form, we are interested in the equation

$$
Y=x^{\prime} \hat{\boldsymbol{\beta}}
$$

where

$$
\boldsymbol{x}^{\prime}=\left[x_{1} x_{2} \cdots x_{k}\right] \quad \text { and } \hat{\boldsymbol{\beta}}^{\prime}=\left[\hat{\boldsymbol{\beta}}_{1} \hat{\beta}_{1} \cdots \hat{\beta}_{k}\right] .
$$

Suppose that $Y=\bar{Y}$ so that

$$
\bar{Y}=\boldsymbol{x}^{\prime} \hat{\boldsymbol{\beta}}=\boldsymbol{x}^{\prime}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime} \mathbf{Y} .
$$

This implies

$$
\frac{1}{n} \mathbb{1}^{\prime} \mathbf{Y}=\boldsymbol{x}^{\prime}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime} \mathbf{Y}
$$

so that

$$
\frac{1}{n} \mathbb{1}^{\prime}=\boldsymbol{x}^{\prime}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime},
$$

or

$$
\frac{1}{n} \mathbb{1}^{\prime} \mathbf{X}=\boldsymbol{x}^{\prime}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime} \mathbf{X}=\boldsymbol{x}^{\prime} .
$$

Hence, we conclude that

$$
x^{\prime}=\frac{1}{n} \mathbb{1}^{\prime} \mathbf{X}=\left[1 \bar{x}_{1} \bar{x}_{2} \cdots \bar{x}_{k}\right] .
$$

In other words, the point $\left(\bar{x}_{1}, \bar{x}_{2}, \ldots, \bar{x}_{k}, \bar{Y}\right)$ satisfies the equation $Y=\boldsymbol{x}^{\prime} \hat{\boldsymbol{\beta}}$ so that the least squares prediction line must pass through this point.

