(11.17) Using standard properties of covariances, and the formulæ derived in class for $\hat{\beta}_{0}, \hat{\beta}_{1}$, we compute

$$
\begin{aligned}
\operatorname{Cov}\left(\hat{\beta}_{0}, \hat{\beta}_{1}\right) & =\operatorname{Cov}\left(\bar{Y}-\hat{\beta}_{1} \bar{x}, \hat{\beta}_{1}\right) \\
& =\operatorname{Cov}\left(\bar{Y}, \hat{\beta}_{1}\right)-\bar{x} \operatorname{Cov}\left(\hat{\beta}_{1}, \hat{\beta}_{1}\right) \\
& =\operatorname{Cov}\left(\frac{1}{n} \sum_{i} Y_{i}, \frac{1}{S_{x x}} \sum_{i}\left(x_{i}-\bar{x}\right) Y_{i}\right)-\bar{x} \operatorname{Var}\left(\hat{\beta}_{1}\right) \\
& =\frac{1}{n S_{x x}} \operatorname{Cov}\left(\sum_{i} Y_{i}, \sum_{i}\left(x_{i}-\bar{x}\right) Y_{i}\right)-\bar{x} \operatorname{Var}\left(\hat{\beta}_{1}\right) \\
& =\frac{1}{n S_{x x}} \sum_{i} \sum_{j}\left(x_{j}-\bar{x}\right) \operatorname{Cov}\left(Y_{i}, Y_{j}\right)-\bar{x} \operatorname{Var}\left(\hat{\beta}_{1}\right) \\
& =\frac{1}{n S_{x x}}\left[\sum_{i}\left(x_{i}-\bar{x}\right) \operatorname{Var}\left(Y_{i}\right)+\sum_{i \neq j}\left(x_{j}-\bar{x}\right) \operatorname{Cov}\left(Y_{i}, Y_{j}\right)\right]-\bar{x} \operatorname{Var}\left(\hat{\beta}_{1}\right)
\end{aligned}
$$

Since $\operatorname{Var}\left(Y_{i}\right)=\sigma^{2}$, we conclude that

$$
\sum_{i}\left(x_{i}-\bar{x}\right) \operatorname{Var}\left(Y_{i}\right)=\sigma^{2} \sum_{i}\left(x_{i}-\bar{x}\right)=0 .
$$

Since Y_{i} and Y_{j} are independent for $i \neq j$, we conclude $\operatorname{Cov}\left(Y_{i}, Y_{j}\right)=0$ for $i \neq j$. We found in class that

$$
\operatorname{Var}\left(\hat{\beta}_{1}\right)=\frac{1}{S_{x x}} \sigma^{2} .
$$

Together these imply that

$$
\operatorname{Cov}\left(\hat{\beta}_{0}, \hat{\beta}_{1}\right)=\frac{-\bar{x}}{S_{x x}} \sigma^{2} .
$$

If $\sum_{i} x_{i}=0$, then clearly $\operatorname{Cov}\left(\hat{\beta}_{0}, \hat{\beta}_{1}\right)=0$. It follows that $\hat{\beta}_{0}$ and $\hat{\beta}_{1}$ will be independent provided that both $\hat{\beta}_{0}$ and $\hat{\beta}_{1}$ are normally distributed. Recall that linear combinations of independent normal random variables are normal. That is, if $A_{i} \sim \mathcal{N}\left(\mu_{i}, \sigma_{i}^{2}\right)$ and the A_{i} are independent, then $A_{1}+\cdots+A_{n} \sim \mathcal{N}\left(\mu_{1}+\cdots+\mu_{n}, \sigma_{1}^{2}+\cdots+\sigma_{n}^{2}\right)$. Since $Y_{i} \sim \mathcal{N}\left(\beta_{0}+\beta_{1} x_{i}, \sigma^{2}\right)$, we see that

$$
\hat{\beta}_{1}=\frac{1}{S_{x x}} \sum_{i}\left(x_{i}-\bar{x}\right) Y_{i} \sim \mathcal{N}\left(\frac{1}{S_{x x}} \sum_{i}\left(x_{i}-\bar{x}\right)\left(\beta_{0}+\beta_{1} x_{i}\right), \frac{\sigma^{2}}{S_{x x}^{2}} \sum_{i}\left(x_{i}-\bar{x}\right)^{2}\right)=\mathcal{N}\left(\beta_{1}, \frac{\sigma^{2}}{S_{x x}}\right) .
$$

and

$$
\begin{aligned}
\hat{\beta}_{0}=\bar{Y}-\hat{\beta}_{1} \bar{x} \sim \mathcal{N} & \left(\beta_{0}+\beta_{1} \bar{x}-\frac{\bar{x}}{S_{x x}} \sum_{i}\left(x_{i}-\bar{x}\right)\left(\beta_{0}+\beta_{1} x_{i}\right), \frac{\sigma^{2}}{n}+\frac{\sigma^{2}}{S_{x x}^{2}} \sum_{i}\left(x_{i}-\bar{x}\right)^{2}\right) \\
& =\mathcal{N}\left(\beta_{0}, \frac{\sum_{i}^{2}}{n S_{x x}}\right) .
\end{aligned}
$$

The independence now follows. (Look again at the box on page 550. Check out $\mathbb{E}\left(\hat{\beta}_{i}\right)$ and $\operatorname{Var}\left(\hat{\beta}_{i}\right)$. Funny that!)
(11.22) (a) We compute

$$
\sum_{i=1}^{6} x_{i}=323.4, \quad \sum_{i=1}^{6} x_{i}^{2}=19111.96, \quad \sum_{i=1}^{6} y_{i}=42.6, \quad \sum_{i=1}^{6} y_{i}^{2}=326.06, \quad \sum_{i=1}^{6} x_{i} y_{i}=2495.08
$$

and

$$
S_{x y}=198.94, \quad S_{x x}=1680.7, \quad S_{y y}=23.6
$$

so that

$$
\hat{\beta}_{1}=\frac{S_{x y}}{S_{x x}}=\frac{198.94}{1680.7}=\frac{29}{245} \approx 0.118
$$

and

$$
\hat{\beta}_{0}=\bar{y}-\hat{\beta}_{1} \bar{x}=\frac{42.6}{6}-\frac{29}{245} \cdot \frac{323.4}{6}=0.72
$$

In other words, the least squares line is given by

$$
\hat{y}=\frac{18}{25}+\frac{29}{245} x
$$

(b) We compute

$$
\mathrm{SSE}=S_{y y}-\hat{\beta}_{1} S_{x y}=23.6-0.118 \cdot 198.94=0.052
$$

and

$$
s^{2}=\frac{\mathrm{SSE}}{n-2}=\frac{0.052}{6-2}=0.013
$$

Therefore, an approximate 95% CI for $\hat{\beta}_{1}$ is

$$
\hat{\beta}_{1} \pm t_{4,0.025} s \sqrt{c_{11}}
$$

or

$$
0.118 \pm 2.776 \cdot \sqrt{0.013} \cdot \sqrt{0.000595}
$$

or, approximately,

$$
0.118 \pm 0.008
$$

(c) When $x=0$, we find $\mathbb{E}(Y)=\beta_{0}$. Hence, we must test $H_{0}: \beta_{0}=0$ against $H_{A}: \beta_{0} \neq 0$. The test statistic is given by

$$
t=\frac{\hat{\beta}_{1}}{s \sqrt{c_{00}}} \approx 4.587
$$

From Table 5, we find that $3.747<4.587<4.606$ so that the p-value is bracketed between $2 \cdot 0.01$ and $2 \cdot 0.005$. (It is a two-sided alternative.) Since the p-value is necessarily smaller than 0.05 , we reject H_{0} at the $\alpha=0.05$ level.
(11.23) (a) Assuming that $\varepsilon \sim \mathcal{N}\left(0, \sigma^{2}\right)$, we find from Exercise 11.17 that the distribution of $\hat{\beta}_{i}$ for $i=0,1$, is

$$
\hat{\beta}_{i} \sim \mathcal{N}\left(\beta_{i}, c_{i i} \sigma^{2}\right)
$$

Hence, under H_{0},

$$
Z=\frac{\hat{\beta}_{i}-\beta_{i 0}}{\sqrt{c_{i i}} \sigma} \sim \mathcal{N}(0,1)
$$

As noted on page 550,

$$
W=\frac{(n-2) S^{2}}{\sigma^{2}} \sim \chi_{n-2}^{2}
$$

Thus, by Definition 7.2,

$$
T=\frac{Z}{\sqrt{W /(n-2)}}=\frac{\frac{\hat{\beta}_{i}-\beta_{i 0}}{\sqrt{c_{i i}} \sigma}}{\sqrt{\frac{(n-2) S^{2}}{\sigma^{2}} /(n-2)}}=\frac{\hat{\beta}_{i}-\beta_{i 0}}{S \sqrt{c_{i i}}}
$$

has a t distribution with $n-2$ degrees of freedom.
(b) The interpretation of a $(1-\alpha)$ confidence interval is that

$$
\alpha=P\left(-t_{\alpha / 2, n-2} \leq T \leq t_{\alpha / 2, n-2}\right)
$$

Hence, from part (a),

$$
\alpha=P\left(-t_{\alpha / 2, n-2} \leq \frac{\hat{\beta}_{i}-\beta_{i}}{S \sqrt{c_{i i}}} \leq t_{\alpha / 2, n-2}\right)
$$

so that

$$
\alpha=P\left(\hat{\beta}_{i}-t_{\alpha / 2, n-2} S \sqrt{c_{i i}} \leq \beta_{i} \leq \hat{\beta}_{i}+t_{\alpha / 2, n-2} S \sqrt{c_{i i}}\right)
$$

In other words, $\mathrm{a}(1-\alpha)$ confidence interval for β_{i} is given by

$$
\hat{\beta}_{i} \pm t_{\alpha / 2, n-2} S \sqrt{c_{i i}}
$$

11.31 Using our results in (11.17), we find

$$
\begin{aligned}
\operatorname{Var}\left(\hat{\beta}_{0}+\hat{\beta}_{1} x^{*}\right) & =\operatorname{Var}\left(\hat{\beta}_{0}\right)+\left(x^{*}\right)^{2} \operatorname{Var}\left(\hat{\beta}_{1}\right)+2 x^{*} \operatorname{Cov}\left(\hat{\beta}_{0}, \hat{\beta}_{1}\right)=\frac{\sum x_{i}^{2}}{n S_{x x}} \sigma^{2}+\left(x^{*}\right)^{2} \frac{\sigma^{2}}{S_{x x}}-2 x^{*} \frac{\bar{x}}{S_{x x}} \sigma^{2} \\
& =\frac{\sigma^{2}}{S_{x x}}\left[\frac{\sum x_{i}^{2}}{n}+\left(x^{*}\right)^{2}-2 x^{*} \bar{x}\right]=\frac{\sigma^{2}}{S_{x x}}\left[\frac{\sum x_{i}^{2}}{n}+\left(x^{*}\right)^{2}-2 x^{*} \bar{x}+\bar{x}^{2}-\bar{x}^{2}\right] \\
& =\frac{\sigma^{2}}{S_{x x}}\left[\frac{\sum x_{i}^{2}}{n}-\bar{x}^{2}+\left(x^{*}-\bar{x}\right)^{2}\right]=\frac{\sigma^{2}}{S_{x x}}\left[\frac{\sum x_{i}^{2}-n \bar{x}^{2}}{n}+\left(x^{*}-\bar{x}\right)^{2}\right] \\
& =\frac{\sigma^{2}}{S_{x x}}\left[\frac{S_{x x}}{n}+\left(x^{*}-\bar{x}\right)^{2}\right]=\left[\frac{1}{n}+\frac{\left(x^{*}-\bar{x}\right)^{2}}{S_{x x}}\right] \sigma^{2}
\end{aligned}
$$

as required. The confidence interval for $\mathbb{E}(Y)$ achieves its shortest length when the variance of $\hat{\beta}_{0}+\hat{\beta}_{1} x^{*}$ is as small as possible. (WHY?) From the formula we just derived, this obviously occurs when $x^{*}=\bar{x}$.

