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(11.17) Using standard properties of covariances, and the formulæ derived in class for β̂0, β̂1,
we compute

Cov(β̂0, β̂1) = Cov(Y − β̂1x, β̂1)

= Cov(Y , β̂1)− xCov(β̂1, β̂1)

= Cov
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)
− xVar(β̂1)

=
1

nSxx
Cov

(∑
i

Yi,
∑
i

(xi − x)Yi

)
− xVar(β̂1)

=
1

nSxx

∑
i

∑
j
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(xj − x) Cov(Yi, Yj)

− xVar(β̂1)

Since Var(Yi) = σ2, we conclude that∑
i

(xi − x) Var(Yi) = σ2
∑
i

(xi − x) = 0.

Since Yi and Yj are independent for i 6= j, we conclude Cov(Yi, Yj) = 0 for i 6= j. We found in
class that

Var(β̂1) =
1
Sxx

σ2.

Together these imply that

Cov(β̂0, β̂1) =
−x
Sxx

σ2.

If
∑

i xi = 0, then clearly Cov(β̂0, β̂1) = 0. It follows that β̂0 and β̂1 will be independent provided
that both β̂0 and β̂1 are normally distributed. Recall that linear combinations of independent
normal random variables are normal. That is, if Ai ∼ N (µi, σ2

i ) and the Ai are independent,
then A1 + · · ·+An ∼ N (µ1 + · · ·+ µn, σ

2
1 + · · ·+ σ2

n). Since Yi ∼ N (β0 + β1xi, σ
2), we see that
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.

and

β̂0 = Y − β̂1x ∼N
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The independence now follows. (Look again at the box on page 550. Check out E(β̂i) and Var(β̂i).
Funny that! )



(11.22) (a) We compute

6∑
i=1

xi = 323.4,
6∑
i=1

x2
i = 19 111.96,

6∑
i=1

yi = 42.6,
6∑
i=1

y2
i = 326.06,

6∑
i=1

xiyi = 2495.08,

and
Sxy = 198.94, Sxx = 1680.7, Syy = 23.6,

so that
β̂1 =

Sxy
Sxx

=
198.94
1680.7

=
29
245
≈ 0.118,

and
β̂0 = y − β̂1x =

42.6
6
− 29

245
· 323.4

6
= 0.72.

In other words, the least squares line is given by

ŷ =
18
25

+
29
245

x.

(b) We compute
SSE = Syy − β̂1Sxy = 23.6− 0.118 · 198.94 = 0.052,

and
s2 =

SSE
n− 2

=
0.052
6− 2

= 0.013.

Therefore, an approximate 95% CI for β̂1 is

β̂1 ± t4,0.025s
√
c11

or
0.118± 2.776 ·

√
0.013 ·

√
0.000595

or, approximately,
0.118± 0.008.

(c) When x = 0, we find E(Y ) = β0. Hence, we must test H0 : β0 = 0 against HA : β0 6= 0. The
test statistic is given by

t =
β̂1

s
√
c00
≈ 4.587.

From Table 5, we find that 3.747 < 4.587 < 4.606 so that the p-value is bracketed between
2 · 0.01 and 2 · 0.005. (It is a two-sided alternative.) Since the p-value is necessarily smaller than
0.05, we reject H0 at the α = 0.05 level.

(11.23) (a) Assuming that ε ∼ N (0, σ2), we find from Exercise 11.17 that the distribution of
β̂i for i = 0, 1, is

β̂i ∼ N (βi, ciiσ2).

Hence, under H0,

Z =
β̂i − βi0√
cii σ

∼ N (0, 1).



As noted on page 550,

W =
(n− 2)S2

σ2
∼ χ2

n−2.

Thus, by Definition 7.2,

T =
Z√

W/(n− 2)
=

β̂i−βi0√
cii σ√

(n−2)S2

σ2 /(n− 2)
=
β̂i − βi0
S
√
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has a t distribution with n− 2 degrees of freedom.

(b) The interpretation of a (1− α) confidence interval is that

α = P
(
−tα/2,n−2 ≤ T ≤ tα/2,n−2

)
.

Hence, from part (a),

α = P

(
−tα/2,n−2 ≤

β̂i − βi
S
√
cii
≤ tα/2,n−2

)
so that

α = P
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√
cii ≤ βi ≤ β̂i + tα/2,n−2S

√
cii

)
.

In other words, a (1− α) confidence interval for βi is given by

β̂i ± tα/2,n−2S
√
cii.

11.31 Using our results in (11.17), we find

Var(β̂0 + β̂1x
∗) = Var(β̂0) + (x∗)2 Var(β̂1) + 2x∗Cov(β̂0, β̂1) =
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as required. The confidence interval for E(Y ) achieves its shortest length when the variance of
β̂0 + β̂1x

∗ is as small as possible. (WHY?) From the formula we just derived, this obviously
occurs when x∗ = x.


