1. (a) As proved in class, the least squares estimate $\hat{\beta}_{0}$ is given by

$$
\hat{\beta}_{0}=\bar{y}-\hat{\beta_{1}} \bar{x} .
$$

Thus,

$$
\begin{aligned}
\sum_{i=1}^{n}\left(y_{i}-\hat{y}_{i}\right)=\sum_{i=1}^{n}\left(y_{i}-\hat{\beta_{0}}-\hat{\beta}_{1} x_{i}\right)=\sum_{i=1}^{n} y_{i}-n \hat{\beta}_{0}-\hat{\beta}_{1} \sum_{i=1}^{n} x_{i} & =n \bar{y}-n \hat{\beta_{0}}-n \hat{\beta_{1}} \bar{x} \\
& =n \bar{y}-n\left(\bar{y}-\hat{\beta_{1}} \bar{x}\right)-n \hat{\beta_{1}} \bar{x} \\
& =0 .
\end{aligned}
$$

(b) To prove that the least squares line

$$
\hat{y}=\hat{\beta_{0}}-\hat{\beta_{1}} x
$$

passes throught the point (\bar{x}, \bar{y}) we simply evaluate the equation at the point $x=\bar{x}$ and see what happens:

$$
\hat{\beta}_{0}-\hat{\beta}_{1} \bar{x}=\left(\bar{y}-\hat{\beta}_{1} \bar{x}\right)-\hat{\beta}_{1} \bar{x}=\bar{y} .
$$

That is, the point (\bar{x}, \bar{y}) satisfies the least squares equation.
2. (11.1) From the data given, we find that

$$
\sum_{i=1}^{5} x_{i}=0, \quad \sum_{i=1}^{5} y_{i}=7.5, \quad \sum_{i=1}^{5} x_{i} y_{i}=-6, \quad \sum_{i=1}^{5} x_{i}^{2}=10
$$

Since

$$
\hat{\beta}_{1}=\frac{\sum_{i=1}^{5} x_{i} y_{i}-n \bar{x} \bar{y}}{\sum_{i=1}^{5} x_{i}^{2}-n \bar{x}^{2}} \quad \text { and } \quad \hat{\beta}_{0}=\bar{y}-\hat{\beta_{1}} \bar{x}
$$

we conclude that

$$
\hat{\beta}_{1}=\frac{-6-5 \cdot(0 / 5) \cdot(7.5 / 5)}{10-5 \cdot(0 / 5)^{2}}=\frac{-3}{5} \quad \text { and } \quad \hat{\beta}_{0}=\frac{7.5}{5}-\frac{-3}{5} \cdot \frac{0}{5}=\frac{3}{2} .
$$

Hence, the equation of the least squares line is given by

$$
\hat{y}=\frac{3}{2}-\frac{3}{5} x .
$$

2. (11.6) Notice that the linear model $Y_{i}=\beta_{1} x_{i}+\varepsilon_{i}$ is simply the usual least squares model with $\beta_{0}=0$ (called the no-intercept model for obvious reasons). In order to find the least squares estimate of β_{1}, called $\hat{\beta}_{1}$, we must minimze the sum of the squares of the errors,

$$
\mathrm{SSE}=\sum_{i=1}^{n}\left(y_{i}-\hat{y}_{i}\right)^{2} .
$$

Now, y_{i} is the i th observation of the random variable Y, and $\hat{y}_{i}=\hat{\beta}_{1} x_{i}$ (since the linear model has 0 intercept). Hence,

$$
\operatorname{SSE}\left(\hat{\beta}_{1}\right)=\sum_{i=1}^{n}\left(y_{i}-\hat{\beta}_{1} x_{i}\right)^{2}
$$

To minimize $\operatorname{SSE}\left(\hat{\beta}_{1}\right)$ we need to take the derivative with respect to $\hat{\beta}_{1}$, set it equal to zero, and solve for the critical points. That is,

$$
\frac{d}{d \hat{\beta}_{1}} \operatorname{SSE}\left(\hat{\beta}_{1}\right)=-2 \sum_{i=1}^{n}\left(y_{i}-\hat{\beta}_{1} x_{i}\right) x_{i}
$$

so that

$$
\frac{d}{d \hat{\beta_{1}}} \operatorname{SSE}\left(\hat{\beta_{1}}\right)=0
$$

implies

$$
0=-2 \sum_{i=1}^{n}\left(y_{i}-\hat{\beta}_{1} x_{i}\right) x_{i}=-2 \sum_{i=1}^{n} x_{i} y_{i}+2 \hat{\beta}_{1} \sum_{i=1}^{n} x_{i}^{2}
$$

or, in other words,

$$
\hat{\beta}_{1}=\frac{\sum_{i=1}^{n} x_{i} y_{i}}{\sum_{i=1}^{n} x_{i}^{2}}
$$

Since $\operatorname{SSE}\left(\hat{\beta}_{1}\right)$ is a function of only one variable, the second derivative test should be checked. We find

$$
\frac{d^{2}}{d \hat{\beta}_{1}^{2}} \operatorname{SSE}\left(\hat{\beta}_{1}\right)=2 \sum_{i=1}^{n} x_{i}^{2}>0
$$

so that the critical value $\hat{\beta}_{1}$ is truly a minimum.
3. Notice that the linear model $Y_{i}=\mu+\varepsilon_{i}$ is simply the usual least squares model with $\beta_{0}=\mu$ and $\beta_{1}=0$ (often called the random noise model). In order to find the least squares estimate of μ, called $\hat{\mu}$, we must minimze the sum of the squares of the errors,

$$
\mathrm{SSE}=\sum_{i=1}^{n}\left(y_{i}-\hat{y}_{i}\right)^{2}
$$

Now, y_{i} is the i th observation of the random variable Y, and $\hat{y}_{i}=\hat{\mu}$ (since the linear model has 0 slope). Hence,

$$
\operatorname{SSE}(\hat{\mu})=\sum_{i=1}^{n}\left(y_{i}-\hat{\mu}\right)^{2}
$$

To minimize $\operatorname{SSE}(\hat{\mu})$ we need to take the derivative with respect to $\hat{\mu}$, set it equal to zero, and solve for the critical points. That is,

$$
\frac{d}{d \hat{\mu}} \operatorname{SSE}(\hat{\mu})=-2 \sum_{i=1}^{n}\left(y_{i}-\hat{\mu}\right)
$$

so that

$$
\frac{d}{d \hat{\mu}} \operatorname{SSE}(\hat{\mu})=0
$$

implies

$$
0=-2 \sum_{i=1}^{n}\left(y_{i}-\hat{\mu}\right)=-2 \sum_{i=1}^{n} y_{i}+2 n \hat{\mu}=-2 n \bar{y}+2 n \hat{\mu}
$$

or, in other words,

$$
\hat{\mu}=\bar{y}
$$

Since $\operatorname{SSE}(\hat{\mu})$ is a function of only one variable, the second derivative test should be checked. We find

$$
\frac{d^{2}}{d \hat{\mu}^{2}} \operatorname{SSE}(\hat{\mu})=2 n>0
$$

so that the critical value $\hat{\mu}=\bar{y}$ is truly a minimum.

