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Printed Lecture Notes

(4.3) It is a simple matter to compute:

• E(X) = 1 · P (X = 1) + 0 · P (X = 0) = 1 · p+ 0 · (1− p) = p;

• E(X2) = 12 · P (X = 1) + 02 · P (X = 0) = 12 · p+ 02 · (1− p) = p;

• E(e−θX) = e−θ·1P (X = 1) + e−θ·0P (X = 0) = e−θ · p+ 1 · (1− p) = 1− p(1− e−θ).

(4.4) In order to solve this problem, we will need to compute several integrals. Since the density
function for any random variable integrates to 1, we have

1√
2π

∫ ∞
−∞

e−y
2/2dy = 1.

After substituting u = y2/2, and carefully handling the infinite limits of integrations, we find

1√
2π

∫ ∞
−∞

ye−y
2/2dy = 0.

Finally, using parts with u = y, dv = ye−y
2/2dy, and carefully handling the infinite limits of

integration,
1√
2π

∫ ∞
−∞

y2e−y
2/2dy = 1.

In fact, it is also straightforward to show that for n = 1, 2, 3, 4, 5, 6, . . .,

1√
2π

∫ ∞
−∞

yne−y
2/2dy = (n− 1) · (n− 3) · (n− 5) · · · 3 · 1 ·

(
1 + (−1)n

2

)
.

As for the expected moments, we apply the Law of the Unconscious Statistician.

• By definition,

E(X) =
1

σ
√

2π

∫ ∞
−∞

xe−
(x−µ)2

2σ2 dx.

Substituting y = x−µ
σ so that x = σy + µ, σdy = dx transforms the integral into

1√
2π

∫ ∞
−∞

(σy + µ)e−y
2/2dy = σ

1√
2π

∫ ∞
−∞

ye−y
2/2dy + µ

1√
2π

∫ ∞
−∞

e−y
2/2dy

= σ · 0 + µ · 1 = µ

using the integrals above.

• By definition,

E(X2) =
1

σ
√

2π

∫ ∞
−∞

x2e−
(x−µ)2

2σ2 dx.



Substituting y = x−µ
σ so that x = σy + µ, σdy = dx transforms the integral into

1√
2π

∫ ∞
−∞

(σy + µ)2e−y
2/2dy =

1√
2π

∫ ∞
−∞

(σ2y2 + 2σµy + µ2)e−y
2/2dy.

As in the previous part, splitting up the integral into the three separate pieces, and using
the integrals computed above, we find

E(X2) = σ2 · 1 + 2σµ · 0 + µ2 · 1 = σ2 + µ2.

• By definition,

E(e−θX) =
1

σ
√

2π

∫ ∞
−∞

e−θxe−
(x−µ)2

2σ2 dx.

The first step is to combine and simplify the integrand, namely

e−θxe−
(x−µ)2

2σ2 = exp
(
−θx− (x− µ)2

2σ2

)
= exp

(
θ2σ4 − 2µθσ2 − (x+ θσ2 − µ)2

2σ2

)
= exp

(
θσ2

2
− µθ

)
exp

(
−(x+ θσ2 − µ)2

2σ2

)
where the last equality was obtained by completing the square. Substituting this back into
the original integral gives

E(e−θX) = exp
(
θσ2

2
− µθ

)
· 1
σ
√

2π

∫ ∞
−∞

exp
(
−(x+ θσ2 − µ)2

2σ2

)
dx.

To compute this final integral we make the substitution y = x+θσ2−µ
σ so that σdy = dx.

This gives

1
σ
√

2π

∫ ∞
−∞

exp
(
−(x+ θσ2 − µ)2

2σ2

)
dx =

1√
2π

∫ ∞
−∞

e−y
2/2 dy = 1,

so that

E(e−θX) = exp
(
θσ2

2
− µθ

)
.

(5.8)

• By definition, Cov(XY ) = E((X − µX)(Y − µY )). Squaring out the terms and using
the linearity of expectation gives E(XY − Y µX −XµY + µXµY ) = E(XY ) − E(Y µX) −
E(XµY )+E(µXµY ). Pulling out the constants gives E(XY )−µXE(Y )−µY E(X)+µXµY
which equals E(XY ) − µXµY − µY µX + µXµY = E(XY ) − E(X)E(Y ) since E(X) = µX
and E(Y ) = µY .

• By definition Var(X) = E((X − µX)2) and Cov(X,X) = E((X − µX)(X − µX)). Hence,
we see that they are both equal to σ2.

• Using the first identity we find Var(X) = Cov(X,X) = E(XX) − E(X)E(X) = E(X2) −
(E(X))2.



(5.9) In Exercise 4.4, we computed E(X) = µ and E(X2) = σ2 + µ2. Using the computational
formula, we find

Var(X) = E(X2)− (E(X))2 = σ2 + µ2 − (µ)2 = σ2.

(5.12) If X and Y are independent, then E(XY ) = E(X)E(Y ). Hence,

Cov(X,Y ) = E(XY )− E(X)E(Y ) = 0,

so that X and Y are uncorrelated.

(5.13)

• We find the density of Y simply using the Law of Total Probability :

P (Y = 0)
= P (Y = 0|X = 1)P (X = 1) + P (Y = 0|X = 0)P (X = 0) + P (Y = 0|X = −1)P (X = −1)
= 0 · 1/4 + 1 · 1/2 + 0 · 1/4
= 1/2,

P (Y = 1)
= P (Y = 1|X = 1)P (X = 1) + P (Y = 1|X = 0)P (X = 0) + P (Y = 1|X = −1)P (X = −1)
= 1 · 1/4 + 0 · 1/2 + 1 · 1/4
= 1/2.

• The joint density of (X,Y ) is given by

P (X = 0, Y = 0) = P (Y = 0|X = 0)P (X = 0) = 1 · 1/2 = 1/2;
P (X = 0, Y = 1) = P (Y = 1|X = 0)P (X = 0) = 0 · 1/2 = 0;
P (X = 1, Y = 0) = P (Y = 0|X = 1)P (X = 1) = 0 · 1/4 = 0;
P (X = 1, Y = 1) = P (Y = 1|X = 1)P (X = 1) = 1 · 1/4 = 1/4;
P (X = −1, Y = 0) = P (Y = 0|X = −1)P (X = −1) = 0 · 1/4 = 0;
P (X = −1, Y = 1) = P (Y = 1|X = −1)P (X = −1) = 1 · 1/4 = 1/4.

Since, for example, P (X = 0, Y = 0) = 1/2, but P (X = 0)P (Y = 0) = 1/2 · 1/2 = 1/4,
we see that X and Y cannot be independent.

• The possible values of XY are 0, 1, −1. Hence,

P (XY = 0) = P (X = 0, Y = 0) = 1/2

and
P (XY = 1) = P (X = 1, Y = 1) = 1/4

using the computations above. By the law of total probability,

P (XY = −1) = 1/4.

(Equivalently, P (XY = −1) = P (X = −1, Y = 1) = 1/4.) Thus,

E(XY ) = 0 · P (XY = 0) + 1 · P (XY = 1) + (−1) · P (XY = −1) = 0 + 1/4− 1/4 = 0.



Since E(X) = 0 and E(Y ) = 0, we see that

Cov(X,Y ) = E(XY )− E(X)E(Y ) = 0− 0 = 0;

whence X and Y are uncorrelated.

(5.15) By definition,

E((g ◦X)(h ◦ Y )) =
∫ ∞
−∞

∫ ∞
−∞

[g(x) · h(y)]f(x, y) dx dy.

Since X and Y are independent, we can write f(x, y) = fX(x) · fY (y). Thus, we have∫ ∞
−∞

∫ ∞
−∞

[g(x) · h(y)]f(x, y) dx dy =
∫ ∞
−∞

∫ ∞
−∞

[g(x) · h(y)]fX(x) · fY (y) dx dy

=
∫ ∞
−∞

g(x)fX(x) dx
∫ ∞
−∞

h(y)fY (y) dy

= E(g ◦X)E(h ◦ Y )

as required.

(5.20) If Var(X) = Var(Y ) = 0, then the third part of the Cauchy-Schwarz inequality implies
(Cov(X,Y ))2 ≤ 0. But, for any number a, it must be the case a2 ≥ 0. Thus, we must have
(Cov(X,Y ))2 ≥ 0. But the only way for 0 ≤ (Cov(X,Y ))2 ≤ 0 is if (Cov(X,Y ))2 = 0. Thus,
since the only number whose square is 0 is 0, we have Cov(X,Y ) = 0.

Textbook

(1.1(g)) Briefly: The parameter of interest is the lifetime of a certain type of transistor. The
population, obviously, consists of these transistors. The inferential objective of the electrical
engineer is to determine whether or not the average lifetime is greater than 500 hours. This
can be done by collecting a random sample, and either constructing a confidence interval or
conducting a hypothesis test. It should be a simple matter to collect a sample of transistors
since, presumably, they come from an assembly line of some sort.

(1.9) By definition,

s2 =
1

n− 1

n∑
i=1

(yi − y)2 where y =
1
n

n∑
i=1

yi.

Notice that (yi − y)2 = y2
i − 2yyi + y2. Thus,

n∑
i=1

(yi − y)2 =
n∑
i=1

y2
i +

n∑
i=1

(−2)yyi +
n∑
i=1

y2 (using c)

=
n∑
i=1

y2
i − 2y

n∑
i=1

yi +
n∑
i=1

y2 (using a)

=
n∑
i=1

y2
i − 2y

n∑
i=1

yi + ny2 (using b).



But,
n∑
i=1

yi = ny

so we can substitute that into the above to conclude
n∑
i=1

y2
i − 2y

n∑
i=1

yi + ny2 =
n∑
i=1

y2
i − 2ny2 + ny2 =

n∑
i=1

y2
i − ny2.

Substituting back into this for y gives

s2 =
1

n− 1

[
n∑
i=1

y2
i − ny2

]
=

1
n− 1

 n∑
i=1

y2
i − n

(
1
n

n∑
i=1

yi

)2
 =

1
n− 1

 n∑
i=1

y2
i −

1
n

(
n∑
i=1

yi

)2
 .

(1.10) If our data consists of {1, 4, 2, 1, 3, 3}, then we trivially compute

6∑
i=1

yi = 1 + 4 + 2 + 1 + 3 + 3 = 14

and
6∑
i=1

y2
i = 12 + 42 + 22 + 12 + 32 + 32 = 40.

Thus,

s2 =
1

6− 1

 6∑
i=1

y2
i −

1
6

(
6∑
i=1

yi

)2
 =

1
5

[
40− 1

6
· 142

]
=

22
15
.

Note that writing garbage with decimals is unacceptable here!

(1.33) Briefly: Lead content readings must be non-negative. Since 0 is only 0.33 standard
deviations below the mean, the population can only extend 0.33 standard deviations below the
mean. This radically skews the distribution so that it cannot be normal. (If this is unclear,
draw a picture.)

(8.2) (a) If θ̂3 = aθ̂1 + (1− a)θ̂2, then

E(θ̂3) = E(aθ̂1 + (1− a)θ̂2) = E(aθ̂1) +E((1− a)θ̂2) = aE(θ̂1) + (1− a)E(θ̂2) = aθ+ (1− a)θ = θ.

(b) If θ̂1 and θ̂2 are independent, then

Var(θ̂3) = Var(aθ̂1 + (1− a)θ̂2) = Var(aθ̂1) + Var((1− a)θ̂2) = a2 Var(θ̂1) + (1− a)2 Var(θ̂2)

= a2σ2
1 + (1− a)2σ2

2.

In order to minimize Var(θ̂3) as a function of a, we use the methods of elementary calculus.
Suppose that f(a) = a2σ2

1 + (1− a)2σ2
2. Then, f ′(a) = 2aσ2

1 − 2(1− a)σ2
2. The critical points of

this function occur when f ′(a) = 0. Thus, the only critical point occurs at

a1 =
σ2

2

σ2
1 + σ2

2

.



Technically, you should use the second derivative test to verify that a1 is a minimum. Since
f ′′(a) = 2σ2

1 + 2σ2
2 > 0 for all a, it is, in fact, a minimum.

(8.4) (a) Recall that if Y has the exponential density as given in the problem, then E(Y ) = θ.
This was done in Stat 251. In order to decide which estimators are unbiased, we simply compute
E(θ̂i) for each i. Four of these are easy:

E(θ̂1) = E(Y1) = θ;

E(θ̂2) = E

(
Y1 + Y2

2

)
=
E(Y1) + E(Y2)

2
=
θ + θ

2
= θ;

E(θ̂3) = E

(
Y1 + 2Y2

3

)
=
E(Y1) + 2E(Y2)

3
=
θ + 2θ

3
= θ;

E(θ̂5) = E(Y ) = E

(
Y1 + Y2 + Y3

3

)
=
E(Y1) + E(Y2) + E(Y3)

3
=
θ + θ + θ

3
= θ.

In order to compute E(θ̂4) = E(min(Y1, Y2, Y3)) we need to do a bit of work.

P (min(Y1, Y2, Y3) > t) = P (Y1 > t, Y2 > t, Y3 > t) = P (Y1 > t) · P (Y2 > t) · P (Y3 > t)

= [P (Y1 > t)]3

= e−3t/θ.

Thus, f(t) = (3/θ)e−3t/θ which, as you will notice, is the density of an Exponential(θ/3) random
variable. (WHY?) Thus,

E(θ̂4) = E(min(Y1, Y2, Y3)) =
θ

3
.

Hence, θ̂1, θ̂2, θ̂3, and θ̂5 are unbiased, while θ̂4 is biased.

(b) To decide which has the smallest variance, we simply compute. Recall that an Exponential(θ)
random variable has variance θ2. Thus,

Var(θ̂1) = Var(Y1) = θ2;

Var(θ̂2) = Var
(
Y1 + Y2

2

)
=

Var(Y1) + Var(Y2)
4

=
θ2 + θ2

4
=
θ2

2
;

Var(θ̂3) = Var
(
Y1 + 2Y2

3

)
=

Var(Y1) + 4 Var(Y2)
9

=
θ2 + 4θ2

9
=

5θ2

9
;

Var(θ̂5) = Var(Y ) = Var
(
Y1 + Y2 + Y3

3

)
=

Var(Y1) + Var(Y2) + Var(Y3)
9

=
θ2 + θ2 + θ2

9
=
θ2

3
.

Thus, θ̂5 has the smallest variance. In fact, we will show later that it is the minimum variance
unbiased estimator. That is, no other unbiased estimator of the mean will have smaller variance
than Y .

(8.6) Recall that a Poisson(λ) random variable has mean λ and variance λ. This was also done
in Stat 251.

(a) Since λ is the mean of a Poisson(λ) random variable, then a natural unbiased estimator for
λ is

λ̂ = Y .



(As you saw in problem (8.4), there is NO unique unbiased estimator, so many other answers
are possible.) It is a simple matter to compute that

E(λ̂) = E(Y ) = λ and Var(λ̂) =
λ

n
.

We will need these in (c).

(b) If C = 3Y + Y 2, then

E(C) = E(3Y ) + E(Y 2) = 3E(Y ) + [Var(Y ) + E(Y )2] = 3λ+ [λ+ λ2] = 4λ+ λ2.

(c) This part is a little tricky. There is NO algorithm to solve it; instead you must THINK.
Since E(C) depends on the parameter λ, we do not know its actual value. Therefore, we can
estimate it. Suppose that θ = E(C). Then, a natural estimator of θ = 4λ+ λ2 is

θ̂ = 4λ̂+ λ̂2,

where λ̂ = Y as in (a). However, if we compute E(λ̂) we find

E(θ̂) = E(4λ̂) + E(λ̂2) = 4E(λ̂) + [Var(λ̂) + E(λ̂)2] = 4λ+
λ

n
+ λ2.

This does not equal θ, so that θ̂ is NOT unbiased. However, a little thought shows that if we
define

θ̃ := 4λ̂+ λ̂2 − λ̂

n
= 4Y + Y

2 − Y

n

then, E(θ̃) = 4λ̂+ λ̂2 so that θ̃ IS an unbiased estimator of θ = E(C).

(8.8) If Y is a uniform (θ, θ + 1) random variable, then its density is

f(y) =

{
1, θ ≤ y ≤ θ + 1,
0, otherwise.

It is a simple matter to compute

E(Y ) =
2θ + 1

2
and VarY =

1
12
.

(a) Hence,

E(Y ) = E

(
Y1 + · · ·+ Yn

n

)
=
E(Y1) + · · ·+ E(Yn)

n
=

2θ+1
2 + · · ·+ 2θ+1

2

n
=

2nθ + n

2n
= θ +

1
2
.

We now find

B(Y ) = E(Y )− θ =
(
θ +

1
2

)
− θ =

1
2
.

(b) A little thought shows that our calculation in (a) iummediately suggests a natural unbiased
estimator of θ, namely

θ̂ = Y − 1
2
.



(c) We first compute that

Var(Y ) = Var
(
Y1 + · · ·+ Yn

n

)
=

Var(Y1) + · · ·+ Var(Yn)
n2

=
1/12 + · · ·+ 1/12

n2
=

1
12n

.

As on page 367,
MSE(Y ) = Var(Y ) + (B(Y ))2

so that

MSE(Y ) =
1

12n
+
(

1
2

)2

=
3n+ 1

12n
.

(8.19) (a) The average calcium concentration in drinking water for kidney stone patients in the
Carolinas is 11.3 ppm. A bound on the error of estimation is given by

2SEcalcium ≈ 2 · 16.6√
467
≈ 1.54 ppm.

It is WRONG if you write an equality at the second or last step. There is no equality there!
In other words, an approximate 95% confidence interval is given by 11.3± 1.54.

(b) The difference in mean ages for kidney stone patients in the Carolinas and in the Rockies
is 46.4− 45.1 = 1.3 years. A bound on the error of estimation is given by

2 SEageRockies−ageCarolinas
= 2
√

SE2
ageRockies

+ SE2
ageCarolinas

≈ 2

√(
10.2√
467

)2

+
(

9.8√
191

)2

≈ 1.7 ppm.

It is WRONG if you write an equality at the second or last step. There is no equality there!
In other words, an approximate 95% confidence interval is given by 1.3± 1.7.

(c) The difference in proportions of kidney stone patients from the Carolinas and the Rockies
who were smokers at the time of the study is 0.78 − 0.61 = 0.17. A two standard deviation
bound on the difference in proportions is given by

2 SEsmokeRockies−smokeCarolinas
= 2
√

SE2
smokeRockies

+ SE2
smokeCarolinas

≈ 2

√√√√(√0.78 · 0.22
467

)2

+

(√
0.61 · 0.39

191

)2

≈ 0.08.

It is WRONG if you write an equality at the second or last step. There is no equality there!
In other words, an approximate 95% confidence interval is given by 0.17± 0.08.

(8.24) Let p1 denote the unknown proportion of first-born or only child college graduates. Thus,
p̂1 = 126/180 = 0.7, and

σp̂1 ≈
√

126/180 · 54/180
180

≈ 0.034.

Let p2 denote the unknown proportion of first-born or only child college graduates. Thus,
p̂2 = 54/100 = 0.54, and

σp̂2 ≈
√

54/100 · 46/100
100

≈ 0.050.



Hence, the difference in proportions is given by p̂1 − p̂2 = 126/180− 54/100 = 4/25 = 0.16 with
standard error

σp̂1−p̂2 =
√
σ2
p̂1

+ σ2
p̂2
≈ 0.0604.

A bound on the error of estimation is therefore 2σp̂1−p̂2 ≈ 0.121. Note that an approximate 95%
confidence interval for p1 − p2 is therefore

(p̂1 − p̂2)± 2σp̂1−p̂2 or 0.16± 0.121.

It is equivalent to consider p̂2− p̂1 instead. The only difference is the minus sign in the estimate
of the difference. The bound on the error of estimation is unchanged. (why?)


