Mathematics/Statistics 251 Fall 2015 Midterm \#1 - Solutions

1. If X denotes the number of prepackaged lunch snacks that contain harmful bacteria, then
(a)

$$
\mathbf{P}(X=0)=\binom{5}{0}\left(\frac{3}{1000}\right)^{0}\left(\frac{997}{1000}\right)^{5}=\left(\frac{997}{1000}\right)^{5}
$$

and
(b)

$$
\begin{aligned}
& \mathbf{P}(X \geq 3)=\mathbf{P}(X=3)+\mathbf{P}(X=4)+\mathbf{P}(X=5) \\
& \quad=\binom{5}{3}\left(\frac{3}{1000}\right)^{3}\left(\frac{997}{1000}\right)^{2}+\binom{5}{4}\left(\frac{3}{1000}\right)^{4}\left(\frac{997}{1000}\right)^{1}+\binom{5}{5}\left(\frac{3}{1000}\right)^{5}\left(\frac{997}{1000}\right)^{0} .
\end{aligned}
$$

2. (a) Since A and B are disjoint, we have $\mathbf{P}(A \cap B)=0$. Therefore,

$$
\begin{aligned}
\mathbf{P}(A \cup B) & =\mathbf{P}(A)+\mathbf{P}(B)-\mathbf{P}(A \cap B) \\
& =\mathbf{P}(A)+\mathbf{P}(B)=1-\mathbf{P}\left(A^{c}\right)+1-\mathbf{P}\left(B^{c}\right) \\
& =(1-0.4)+(1-0.9) \\
& =0.6+0.1 \\
& =0.7 .
\end{aligned}
$$

2. (b) Since A and B are independent, we have $\mathbf{P}(A \cap B)=\mathbf{P}(A) \mathbf{P}(B)$. Therefore,

$$
\begin{aligned}
\mathbf{P}(A \cup B)=\mathbf{P}(A)+\mathbf{P}(B)-\mathbf{P}(A \cap B) & =\mathbf{P}(A)+\frac{\mathbf{P}(A \cap B)}{\mathbf{P}(B)}-\mathbf{P}(A \cap B) \\
& =0.6+\frac{0.3}{0.6}-0.3 \\
& =0.6+0.5-0.3 \\
& =0.8
\end{aligned}
$$

3. \quad Since A and B are independent, we have $\mathbf{P}(A \cap B)=\mathbf{P}(A) \mathbf{P}(B)$. To show that A^{c} and B^{c} are also independent, we must show that $\mathbf{P}\left(A^{c} \cap B^{c}\right)=\mathbf{P}\left(A^{c}\right) \mathbf{P}\left(B^{c}\right)$. Therefore, since

$$
\begin{aligned}
\mathbf{P}\left(A^{c} \cap B^{c}\right)=\mathbf{P}\left((A \cup B)^{c}\right)=1-\mathbf{P}(A \cup B) & =1-[\mathbf{P}(A)+\mathbf{P}(B)-\mathbf{P}(A \cap B)] \\
& =1-\mathbf{P}(A)-\mathbf{P}(B)+\mathbf{P}(A \cap B) \\
& =1-\mathbf{P}(A)-\mathbf{P}(B)+\mathbf{P}(A) \mathbf{P}(B) \\
& =[1-\mathbf{P}(A)][1-\mathbf{P}(B)] \\
& =\mathbf{P}\left(A^{c}\right) \mathbf{P}\left(B^{c}\right)
\end{aligned}
$$

we conclude A^{c} and B^{c} are independent.
4. Let W_{j}, B_{j}, and R_{j} denote the events that the j th sock Andrew selects will be white, blue, or red, respectively. Therefore,
(a)

$$
\mathbf{P}(\text { both socks are blue })=\mathbf{P}\left(B_{1} \cap B_{2}\right)=\mathbf{P}\left(B_{1}\right) \mathbf{P}\left(B_{2} \mid B_{1}\right)=\frac{4}{14} \cdot \frac{3}{13}=\frac{6}{91},
$$

(b)

$$
\begin{aligned}
& \mathbf{P} \text { (both socks are same colour) } \\
& \quad=\mathbf{P}\left(W_{1} \cap W_{2} \text { or } B_{1} \cap B_{2} \text { or } R_{1} \cap R_{2}\right) \\
& \quad=\mathbf{P}\left(W_{1} \cap W_{2}\right)+\mathbf{P}\left(B_{1} \cap B_{2}\right)+\mathbf{P}\left(R_{1} \cap R_{2}\right) \\
& \quad=\mathbf{P}\left(W_{1}\right) \mathbf{P}\left(W_{2} \mid W_{1}\right)+\mathbf{P}\left(B_{1}\right) \mathbf{P}\left(B_{2} \mid B_{1}\right)+\mathbf{P}\left(R_{1}\right) \mathbf{P}\left(R_{2} \mid R_{1}\right) \\
& \quad=\frac{2}{14} \cdot \frac{1}{13}+\frac{4}{14} \cdot \frac{3}{13}+\frac{8}{14} \cdot \frac{7}{13} \\
& \quad=\frac{35}{91}=\frac{5}{13}
\end{aligned}
$$

and
(c)

$$
\begin{aligned}
& \mathbf{P}(\text { both socks are blue } \mid \text { both socks are same colour }) \\
& =\frac{\mathbf{P}(\text { both socks are same colour } \mid \text { both socks are blue }) \mathbf{P}(\text { both socks are blue })}{\mathbf{P}(\text { both socks are same colour })} \\
& =\frac{1 \cdot \frac{6}{91}}{\frac{35}{91}} \\
& =\frac{6}{35} .
\end{aligned}
$$

5. (a) Since F is a distribution function, it is necessarily the case that $F(2)=1$. This implies that $4 c=1$ so $c=1 / 4$.
6. (b) Since $f(x)=F^{\prime}(x)$, we obtain

$$
f(x)= \begin{cases}2 x, & 0 \leq x \leq 2 \\ 0, & \text { otherwise }\end{cases}
$$

5. (c) We have $\mathbf{P}(1<X \leq 2)=\mathbf{P}(X \leq 2)-\mathbf{P}(X \leq 1)=F(2)-F(1)=1-\frac{1}{4}=\frac{3}{4}$.
