Math/Stat 251 Fall 2015
Summary of Lecture from September 14, 2015
Our goal is to devise a mathematical model of a chance experiment; that is, an experiment whose outcome is randomly one of many possibilities. A priori, we do not know which outcome will result.

Formally, the sample space denoted by S consists of all possible outcomes of the experiment. Since we do not know which outcome will result, we assign probabilities to the various outcomes in a reasonable way to indicate the relative likelihood with which we believe those outcomes to occur. The actual assignment of probabilities in a given situation might be a philosophical matter. However, we will not engage in that discussion here. We will assume that there is a probability assignment.
In addition to assigning probabilities to individual outcomes, we might want to assign probabilities to more sophisticated collections of outcomes. These are known as events. Thus, an event is a subset of the sample space (to use the language of set theory); that is, an event is simply a collection of outcomes.
As we have already noted, a probability is, intuitively, a measure of the relative likelihood of the occurrence of an event. Therefore, several reasonable properties that we might expect a probability to satisfy are the following.
(i) The probability that something happens should be 1 ; that is, $\mathbf{P}(S)=1$.
(ii) The probability that nothing happens should be 0 ; that is, $\mathbf{P}(\emptyset)=0$.
(iii) The probability of any event should be between 0 and 1 ; that is, if A is an event, then $0 \leq \mathbf{P}(A) \leq 1$.
(iv) The probability of an event and its complement should sum to 1 ; that is, if A is an event, then the probability of A^{c} (the complement of A in S) should be $\mathbf{P}\left(A^{c}\right)=1-\mathbf{P}(A)$.
(v) The probability of a disjoint union of events should be the sum of the individual probabilities; that is, if A and B are disjoint events (meaning $A \cap B=\emptyset$), then the probability of either A or B happening (meaning $A \cup B$) should be $\mathbf{P}(A \cup B)=\mathbf{P}(A)+\mathbf{P}(B)$.

Hence, we see that a probability \mathbf{P} should be defined as a function from a collection of events to the real numbers in $[0,1]$.
In addition to considering the probabilities of events, we might want to bet on a particular outcome. Although the wager might be fixed, the payout of the bet depends on the outcome observed. We describe such a bet as a random variable. Formally, a random variable is defined as a function from the sample space S to the real numbers \mathbb{R}. The letter X is traditionally used to denote a random variable so that we might write $X: S \rightarrow \mathbb{R}$.

Example. Suppose that we wish to model the experiment of flipping a fair coin twice. If we take our sample space to be

$$
S=\{H H, H T, T H, T T\}
$$

then, since it is assumed that the coin is fair, it is reasonable to declare that

$$
\mathbf{P}(\{H H\})=\mathbf{P}(\{H T\})=\mathbf{P}(\{T H\})=\mathbf{P}(\{T T\})=\frac{1}{4}
$$

Using the probabilities for the individual outcomes along with (\mathbf{v}) we can determine probabilities for various events. For instance, if A is the event that at least one head appears, then $A=\{H H, H T, T H\}$ and so

$$
\begin{aligned}
\mathbf{P}(A)=\mathbf{P}(\{H H, H T, T H\})=\mathbf{P}(\{H H\} \text { or }\{H T\} \text { or }\{T H\}) & =\mathbf{P}(\{H H\})+\mathbf{P}(\{H T\})+\mathbf{P}(\{T H\}) \\
& =\frac{1}{4}+\frac{1}{4}+\frac{1}{4} \\
& =\frac{3}{4}
\end{aligned}
$$

If we let B be the event that no head appears, then $B=A^{c}$ and so using (iv) we find

$$
\mathbf{P}(B)=\mathbf{P}\left(A^{c}\right)=1-\mathbf{P}(A)=1-\frac{3}{4}=\frac{1}{4}
$$

Of course, we could have solved this easy problem directly by noting that

$$
\mathbf{P}(B)=\mathbf{P}(T T)=\frac{1}{4}
$$

but the point was to illustrate (iv) in a simple setting. Suppose that you and I make the following bet. You pay me $\$ 3$, you flip the coin twice, and I pay you $\$ 4$ for every head that appears. If X denotes your net winnings, then X is a random variable whose value depends on the outcome observed. That is, $X: S \rightarrow \mathbb{R}$ is given explicitly by

$$
\begin{aligned}
& X(H H)=2 \times 4-3=5 \\
& X(T H)=1 \times 4-3=1 \\
& X(H T)=1 \times 4-3=1 \\
& X(T T)=0 \times 4-3=-3
\end{aligned}
$$

Notice that we can use the probabilities for the individual outcomes to determine probabilities for the values of the random variable. That is,

$$
\begin{aligned}
& \mathbf{P}(X=5)=\mathbf{P}(\{H H\})=\frac{1}{4} \\
& \mathbf{P}(X=1)=\mathbf{P}(\{H T\} \text { or }\{T H\})=\mathbf{P}(\{H T\})+\mathbf{P}(\{T H\})=\frac{1}{4}+\frac{1}{4}=\frac{1}{2} \\
& \mathbf{P}(X=-3)=\mathbf{P}(\{T T\})=\frac{1}{4}
\end{aligned}
$$

