
Math/Stat 251 Fall 2015
The Poisson Process (November 27, 2015)

On October 30, 2015, we discussed the following exercise in class.

Exercise. Based on studies from previous Hallowe’ens, I have determined that trick-or-
treating ghouls arrive at my door as follows. The ghouls arrive independently and the
time in minutes between the arrival of successive ghouls is exponentially distributed with
parameter � = 2. If I leave my jack-o-latern lit for two hours (signifying that the ghouls
are welcome to ring my bell) and my pumpkin contains 100 candy bars, do I expect to have
enough candy bars to give one to every ghoul who trick-or-treats?

Our intuition told us that since the times in minutes between the arrivals of successive ghouls
were independent and exponentially distributed with mean 1/� = 1/2, we should expect a
ghoul every 30 seconds. Hence, in two hours we should expect 240 ghouls meaning that our
box of 100 candy bars is not su�cient.

Let’s prove that this intuition is correct. In fact, we can prove things in a bit more generality.
Instead of assuming that the time in minutes between the arrival of successive ghouls is expo-
nentially distributed with parameter � = 2, let’s assume that it is exponentially distributed
with parameter � > 0.
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In other words, T
k

is the sum of k iid random variables each having an Exp(�) distribution.
To find the distribution of T
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, we can use moment generating functions. That is,
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which just so happens to be the moment generating function of a random variable with a
Gamma(k, �) distribution. Thus,
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Now, here is the next observation. Let X
t

denote the number of ghouls that have arrived
by time t. Note that X

t

is a discrete random variable since the number of ghouls who have
arrived is necessarily a non-negative integer. Observe that at most k ghouls have arrived at
time t if and only if ghoul k + 1 arrived after time t; that is, {X

t
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> t} and so
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Our goal is to compute
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but we do not yet have an expression for P (X
t

= k). However, we do have an expression for
P (X

t

 k). Observe that

P (X
t

= k) = P (X
t

 k)�P (X
t

 k � 1)

and so using (⇤) and (⇤⇤) we conclude
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The next step is to analyze the di↵erence of integrals of gamma functions. The “usual” way
to analyze integrals of gamma function is to try integration by parts. Hence, consider
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In other words, we have found our required expression for the particular di↵erence of integrals
of gamma functions in (†). Thus,
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since �(k + 1) = k! when k is a positive integer.
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Thus, if we return to the ghoulish exercise that started this whole mess and take t = 120
minutes and � = 2, then
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) = 2 · 120 = 240

as suspected!


