Math/Stat 251 Fall 2015
A Confidence Interval for the Mean of a Normal Population with Known Variance (November 13, 2015)
The purpose of this handout is to guide you through a rigorous derivation of the formula for a confidence interval for the mean μ from a normally distributed population with a known variance σ^{2}. The formula that appears in the very last part of this handout is always stated without any justification in elementary statistics class like Stat 160 . Now you can justify it!
Throughout this handout, suppose that $X \sim \mathcal{N}(0,1)$ so that the density function of X is

$$
f_{X}(x)=\frac{1}{\sqrt{2 \pi}} e^{-x^{2} / 2}
$$

for $-\infty<x<\infty$.
Problem 1. Compute $\mathbb{E}(X)=\int_{-\infty}^{\infty} x f_{X}(x) \mathrm{d} x$.
Problem 2. Compute $\mathbb{E}\left(X^{2}\right)=\int_{-\infty}^{\infty} x^{2} f_{X}(x) \mathrm{d} x$. Hint: use integration-by-parts with $u=x$ and $\mathrm{d} v=x e^{-x^{2} / 2} \mathrm{~d} x$, and the fact that a normal density function integrates to 1 .
Problem 3. Compute $\operatorname{Var}(X)$.
Problem 4. Compute $m_{X}(t)=\mathbb{E}\left[e^{t X}\right]$, the moment generating function of X. Hint: complete the square in the exponent, manipulate it a bit, and use the fact that a normal density function integrates to 1 .

For the next three problems, suppose that $Y=\sigma X+\mu$ where $\sigma>0$ and $\mu \in \mathbb{R}$ are constant.
Problem 5. Compute $\mathbb{E}(Y)$ and $\operatorname{Var}(Y)$.
Problem 6. Determine the density function of Y and conclude that $Y \sim \mathcal{N}\left(\mu, \sigma^{2}\right)$. Note that this justifies the statement " Y is normally distributed with mean μ and variance σ^{2} if and only if $Y \sim \mathcal{N}\left(\mu, \sigma^{2}\right)$."
Problem 7. Verify that the moment generating function of Y is $m_{Y}(t)=e^{\mu t+\sigma^{2} t^{2} / 2}$.
Problem 8. As a converse to the previous three problems, suppose that $Y \sim \mathcal{N}\left(\mu, \sigma^{2}\right)$ and let

$$
Z=\frac{Y-\mu}{\sigma}
$$

Verify that $Z \sim \mathcal{N}(0,1)$.
Problem 9. Suppose that $X_{1} \sim \mathcal{N}\left(\mu_{1}, \sigma_{1}^{2}\right)$ and $X_{2} \sim \mathcal{N}\left(\mu_{2}, \sigma_{2}^{2}\right)$ are independent random variables. Let $Y=X_{1}+X_{2}$ and determine the moment generating function of Y. As a consequence of Problem 7, this proves that $X_{1}+X_{2} \sim \mathcal{N}\left(\mu_{1}+\mu_{2}, \sigma_{1}^{2}+\sigma_{2}^{2}\right)$.
Problem 10. As an extension of the previous problem, show that if $X_{1}, X_{2}, \ldots, X_{n}$ are independent with $X_{i} \sim \mathcal{N}\left(\mu_{i}, \sigma_{i}^{2}\right)$, then

$$
X_{1}+X_{2}+\cdots+X_{n} \sim \mathcal{N}\left(\mu_{1}+\mu_{2}+\cdots+\mu_{n}, \sigma_{1}^{2}+\sigma_{2}^{2}+\cdots+\sigma_{n}^{2}\right)
$$

In particular, if $X_{1}, X_{2}, \ldots, X_{n}$ are iid with $X_{i} \sim \mathcal{N}\left(\mu, \sigma^{2}\right)$, then

$$
X_{1}+X_{2}+\cdots+X_{n} \sim \mathcal{N}\left(n \mu, n \sigma^{2}\right)
$$

Problem 11. Suppose that $X_{1}, X_{2}, \ldots, X_{n}$ are iid with $X_{i} \sim \mathcal{N}\left(\mu, \sigma^{2}\right)$, and let

$$
\bar{X}=\frac{X_{1}+X_{2}+\cdots+X_{n}}{n} .
$$

Verify that $\bar{X} \sim \mathcal{N}\left(\mu, \sigma^{2} / n\right)$ and therefore conclude from Problem 8 that

$$
\frac{\bar{X}-\mu}{\sigma / \sqrt{n}} \sim \mathcal{N}(0,1)
$$

At this point we have all of the results needed to derive the formula for a confidence interval. Suppose that $Z \sim \mathcal{N}(0,1)$ and assume that $z_{\alpha / 2}$ is chosen so that

$$
\mathbf{P}\left(-z_{\alpha / 2} \leq Z \leq z_{\alpha / 2}\right)=1-\alpha
$$

For instance, from a table of normal probabilities we see that $z_{0.025}=1.96$ since

$$
\mathbf{P}(-1.96 \leq Z \leq 1.96)=0.95
$$

and $z_{0.05}=1.645$ since

$$
\mathbf{P}(-1.645 \leq Z \leq 1.645)=0.90
$$

Hence, since

$$
Z=\frac{\bar{X}-\mu}{\sigma / \sqrt{n}} \sim \mathcal{N}(0,1)
$$

we conclude that

$$
\mathbf{P}\left(-z_{\alpha / 2} \leq \frac{\bar{X}-\mu}{\sigma / \sqrt{n}} \leq z_{\alpha / 2}\right)=1-\alpha
$$

Solving for μ implies that

$$
\mathbf{P}\left(\bar{X}-z_{\alpha / 2} \frac{\sigma}{\sqrt{n}} \leq \mu \leq \bar{X}+z_{\alpha / 2} \frac{\sigma}{\sqrt{n}}\right)=1-\alpha
$$

As a result of this probabilistic statement, we say that

$$
\left[\bar{X}-z_{\alpha / 2} \frac{\sigma}{\sqrt{n}}, \bar{X}+z_{\alpha / 2} \frac{\sigma}{\sqrt{n}}\right]
$$

is a $100(1-\alpha) \%$ confidence interval for μ (or a confidence interval for μ with coverage probability $1-\alpha$).

