Math/Stat 251 Fall 2015
Practice Problems for Midterm \#2 (November 16, 2015)
Problem 1. Suppose that X is a continuous random variable with density function

$$
f(x)= \begin{cases}\frac{3}{7} x^{2}, & 1 \leq x \leq 2 \\ 0, & \text { otherwise }\end{cases}
$$

(a) Verify that f is, in fact, a legitimate density function.
(b) Compute $\mathbb{E}(X)$, the expected value (or mean or average) of X.
(c) Compute $\operatorname{Var}(X)$, the variance of X.
(d) Determine $F(x)$, the distribution function of X.
(e) Determine the median of X.

Problem 2. Suppose that X_{1} and X_{2} are independent continuous random variables each having common distribution function

$$
F(x)= \begin{cases}1-x e^{-x}-e^{-x}, & x \geq 0 \\ 0, & x<0\end{cases}
$$

(a) Determine $f(x)$, their common density function.
(b) Suppose that $Y_{1}=\min \left\{X_{1}, X_{2}\right\}$. Determine $f_{Y_{1}}(y)$, the density function of Y_{1}.
(c) Suppose that $Y_{2}=\max \left\{X_{1}, X_{2}\right\}$. Determine $f_{Y_{2}}(y)$, the density function of Y_{2}.
(d) Let $Z_{1}=Y_{1}^{3}$. Determine $f_{Z_{1}}(z)$, the density function of Z_{1}.
(e) Let $Z_{2}=\sqrt{Y_{2}}$. Determine $f_{Z_{2}}(z)$, the density function of Z_{2}.

Problem 3. Suppose that X and Y are independent, continuous random variables. If the density function of X is $f_{X}(x)=x e^{-x}$ for $x \geq 0$, and the density function of Y is $f_{Y}(y)=e^{-y}$ for $y \geq 0$, use the law of total probability to determine $\mathbf{P}(X<Y)$. Hint: It is probably easier to condition on the value of X.

Problem 4. Suppose that X is a continuous random variable with distribution function $F(x)$ and density function $f(x)$. Suppose further that f is continuous. Use the law of the unconscious statistician to show that $\mathbb{E}[F(X)]=1 / 2$.

