Math/Stat 251 Fall 2015
Estimates of the Deviation of a Random Variable from its Mean
Our goal is to explain how the standard deviation is a measure of the spread of a distribution.
Theorem (Markov's inequality). Suppose that Y is a non-negative random variable. If $a>0$, then

$$
\mathbf{P}(Y \geq a) \leq \frac{\mathbb{E}(Y)}{a}
$$

Proof. Suppose that $Y \geq 0$ and let $a>0$. If we define the random variable

$$
I= \begin{cases}1, & \text { if } Y \geq a \\ 0, & \text { if } Y<a\end{cases}
$$

then $Y \geq a I$ and so $\mathbb{E}(Y) \geq a \mathbb{E}(I)$. However,

$$
\mathbb{E}(I)=1 \cdot \mathbf{P}(I=1)+0 \cdot \mathbf{P}(I=0)=1 \cdot \mathbf{P}(Y \geq a)+0 \cdot \mathbf{P}(Y<a)=\mathbf{P}(Y \geq a)
$$

implying that

$$
\mathbb{E}(Y) \geq a \mathbf{P}(Y \geq a) \quad \text { or, equivalently, } \quad \mathbf{P}(Y \geq a) \leq \frac{\mathbb{E}(Y)}{a}
$$

as required.
Two special cases of Markov's inequality are often distinguished. Observe that if $Y \geq 0$, then $Y^{2} \geq a^{2}$ if and only if $Y \geq a$. This implies that

$$
\begin{equation*}
\mathbf{P}(Y \geq a)=\mathbf{P}\left(Y^{2} \geq a^{2}\right) \leq \frac{\mathbb{E}\left(Y^{2}\right)}{a^{2}} \tag{*}
\end{equation*}
$$

This is sometimes known as Chebychev's inequality. Similarly, $Y \geq a$ if and only if $e^{t Y} \geq e^{t a}$ for any $t>0$ implying that

$$
\mathbf{P}(Y \geq a)=\mathbf{P}\left(e^{t Y} \geq e^{t a}\right) \leq \frac{\mathbb{E}\left(e^{t Y}\right)}{e^{t a}}
$$

Since $m(t)=\mathbb{E}\left(e^{t Y}\right)$ is the moment generating function of Y, we can rephrase this as

$$
\mathbf{P}(Y \geq a) \leq e^{-t a} m(t) \text { for } t>0
$$

This is sometimes known as Chernoff's inequality.
Of course, we are often interested in random variables other than those that are non-negative. The general form of Chebychev's inequality is as follows.

Theorem (Chebychev's inequality). If X is a random variable with mean $\mathbb{E}(X)$ and variance $\operatorname{Var}(X)$, then

$$
\mathbf{P}(|X-\mathbb{E}(X)| \geq a) \leq \frac{\operatorname{Var}(X)}{a^{2}}
$$

for any $a>0$.

Proof. Let $Y=|X-\mathbb{E}(X)|$ so that $Y \geq 0$ and apply Chebychev's inequality in the form of $(*)$ to obtain

$$
\mathbf{P}(Y \geq a)=\mathbf{P}(|X-\mathbb{E}(X)| \geq a) \leq \frac{\mathbb{E}\left(|X-\mathbb{E}(X)|^{2}\right)}{a^{2}}=\frac{\operatorname{Var}(X)}{a^{2}}
$$

using the fact that $\operatorname{Var}(X)=\mathbb{E}\left((X-\mathbb{E}(X)]^{2}\right)=\mathbb{E}\left(|X-\mathbb{E}(X)|^{2}\right)$ by definition.
As an application, if we take $a=2 \mathrm{SD}(X)$, then we find

$$
\mathbf{P}(|X-\mathbb{E}(X)| \geq 2 \mathrm{SD}(X)) \leq \frac{\operatorname{Var}(X)}{(2 \mathrm{SD}(X))^{2}}=\frac{1}{4}
$$

and if we take $a=3 \mathrm{SD}(X)$, then we find

$$
\mathbf{P}(|X-\mathbb{E}(X)| \geq 3 \mathrm{SD}(X)) \leq \frac{\operatorname{Var}(X)}{(3 \mathrm{SD}(X))^{2}}=\frac{1}{9}
$$

By taking complements, we can re-write these inequalities as

$$
\mathbf{P}(|X-\mathbb{E}(X)| \leq 2 \mathrm{SD}(X)) \geq \frac{3}{4}
$$

and

$$
\mathbf{P}(|X-\mathbb{E}(X)| \leq 3 \mathrm{SD}(X)) \geq \frac{8}{9}
$$

The interpretation is that if X is any continuous random variable with density function f, then at least 75% of the area under f falls within 2 standard deviation of the mean and at least 89% of the area under f falls within 3 standard deviations of the mean. That is,

$$
\mathbf{P}(|X-\mu| \leq 2 \sigma) \geq \frac{3}{4} \quad \text { and } \quad \mathbf{P}(|X-\mu| \leq 3 \sigma) \geq \frac{8}{9}
$$

Equivalently, we can interpret this result statistically: for any random sample of data consisting of observations that were taken independently, at least 75% of data is within 2 standard deviations of the mean and at least 89% of data is within 3 standard deviations of the mean.
In fact, this is how Chebychev's inequality is usually presented in elementary statistics textbooks. If $k>0$, then

$$
\mathbf{P}(|X-\mu| \leq k \sigma) \geq 1-\frac{1}{k^{2}}
$$

Exercise. Suppose that $X \sim \operatorname{Exp}(\lambda)$. Compute $\mu=\mathbb{E}(X)$ and $\sigma=\operatorname{SD}(X)$. Sketch a graph of $f(x)$ and mark the points $\mu, \mu+2 \sigma$, and $\mu-2 \sigma$ on the horizontal axis. Compute $\mathbf{P}(|X-\mu| \leq 2 \sigma)=\mathbf{P}(\mu-2 \sigma \leq X \leq \mu+2 \sigma)$. How does this compare to the estimate promised by Chebychev's inequality?

