Math/Stat 251 Fall 2015

A Function of a Random Variable (November 2, 2015)
Let X be a continuous random variable with density function f. Sometimes we are interested in a function of a random variable. For instance, we might view X as a physical measurement and $g(X)$ as that measurement in different units. We've seen that $\mathbb{E}[g(X)]$, the mean or expected value of $g(X)$, is given by

$$
\mathbb{E}[g(X)]=\int_{-\infty}^{\infty} g(x) f(x) \mathrm{d} x
$$

(which is sometimes called the law of the unconscious statistician). However, as we will now see, in many cases we can actually determine the distribution of $g(X)$.

Remark. The pivot method is a technique from statistical inference for constructing confidence intervals that requires one to do exactly this.

The basic technique is to determine the distribution function of $Y=g(X)$ from first principles. The density function of $Y=g(X)$ can then be found by differentiation.
Example. Suppose that $X \sim \operatorname{Exp}(\lambda)$. Determine the distribution/density of $Y=e^{X}$.
Solution. If $X \sim \operatorname{Exp}(\lambda)$, then $f_{X}(x)=\lambda e^{-\lambda x}$ for $x \geq 0$. Let $Y=e^{X}$. By definition,

$$
\begin{aligned}
F_{Y}(y)=\mathbf{P}(Y \leq y)=\mathbf{P}\left(e^{X} \leq y\right)=\mathbf{P}(X \leq \log y)=\int_{-\infty}^{\log y} f_{X}(x) \mathrm{d} x & =\int_{0}^{\log y} \lambda e^{-\lambda x} \mathrm{~d} x \\
& =-\left.e^{-\lambda x}\right|_{0} ^{\log y} \\
& =1-e^{-\lambda \log y} \\
& =1-y^{-\lambda}
\end{aligned}
$$

provided that $y \geq 1$. (Why is this the restriction on y ? If $x \geq 0$ and $y=e^{x}$, then $y \geq e^{0}=1$.) We now find $f_{Y}(y)$.

- Method \#1: direct differentiation of the distribution function

$$
f_{Y}(y)=\frac{\mathrm{d}}{\mathrm{~d} y} F_{Y}(y)=\frac{\mathrm{d}}{\mathrm{~d} y}\left(1-y^{-\lambda}\right)=\lambda y^{-1-\lambda} .
$$

- Method \#2: "symbolic" differentiation of the distribution function

$$
\begin{aligned}
f_{Y}(y)=\frac{\mathrm{d}}{\mathrm{~d} y} F_{Y}(y)=\frac{\mathrm{d}}{\mathrm{~d} y} \int_{0}^{\log y} \lambda e^{-\lambda x} \mathrm{~d} x & =\lambda e^{-\lambda \log y} \cdot \frac{\mathrm{~d}}{\mathrm{~d} y}(\log y) \quad \text { by the chain rule } \\
& =\lambda y^{-\lambda} \cdot \frac{1}{y} \text { as above. }
\end{aligned}
$$

Remark. We put subscripts on the density functions to keep track of the random variables. That is, f_{X} is the density function of X and f_{Y} is the density function of Y. We cannot use just f here since there are two different density functions being considered. The same is true for the distribution functions.

Remark. We observe that Method \#2 can be generalized to any strictly increasing function g provided that its derivative g^{\prime} exists.
Theorem and Proof. Suppose that X is a continuous random variables with density f_{X} and g is a strictly increasing, differentiable function. If $Y=g(X)$, then

- $F_{Y}(y)=\mathbf{P}(Y \leq y)=\mathbf{P}(g(X) \leq y)=\mathbf{P}\left(X \leq g^{-1}(y)\right)=F_{X}\left(g^{-1}(y)\right)$, and
- $f_{Y}(y)=\frac{\mathrm{d}}{\mathrm{d} y} F_{Y}(y)=\frac{\mathrm{d}}{\mathrm{d} y} \int_{-\infty}^{g^{-1}(y)} f_{X}(x) \mathrm{d} x=f_{X}\left(g^{-1}(y)\right) \cdot \frac{\mathrm{d}}{\mathrm{d} y} g^{-1}(y)$.

On the other hand, if g is strictly decreasing, then

$$
f_{Y}(y)=-f_{X}\left(g^{-1}(y)\right) \cdot \frac{\mathrm{d}}{\mathrm{~d} y} g^{-1}(y)
$$

(The extra minus sign is needed since $\frac{\mathrm{d}}{\mathrm{d} y} g^{-1}(y)<0$.)
Summary. If g is strictly monotone, then

$$
f_{Y}(y)=f_{X}\left(g^{-1}(y)\right) \cdot\left|\frac{\mathrm{d}}{\mathrm{~d} y} g^{-1}(y)\right| .
$$

Remark. When you need to change variables, don't try to just plug into a memorized formula. Instead, follow either "Method \#1" or "Method \#2" directly.

Example. Suppose that X is a continuous random variable with density

$$
f(x)=\frac{3}{7} x^{2}
$$

for $1 \leq x \leq 2$. Determine the density function of $Y=1 / X^{2}$.
Solution. By definition,

$$
\begin{aligned}
F_{Y}(y)=\mathbf{P}(Y \leq y)=\mathbf{P}\left(1 / X^{2} \leq y\right)=\mathbf{P}\left(1 / y \leq X^{2}\right)=\mathbf{P}\left(X \geq y^{-1 / 2}\right) & =\int_{y^{-1 / 2}}^{\infty} f(x) \mathrm{d} x \\
& =\int_{y^{-1 / 2}}^{2} \frac{3}{7} x^{2} \mathrm{~d} x \\
& =\frac{8}{7}-\frac{y^{-3 / 2}}{7}
\end{aligned}
$$

provided that $1 / 4 \leq y \leq 1$. Hence,

$$
F_{Y}(y)= \begin{cases}0, & y<1 / 4 \\ \frac{8}{7}-\frac{y^{-3 / 2}}{7}, & 1 / 4 \leq y \leq 1 \\ 1, & y \geq 1\end{cases}
$$

and so

$$
f_{Y}(y)=\frac{\mathrm{d}}{\mathrm{~d} y}\left(\frac{8}{7}-\frac{y^{-3 / 2}}{7}\right)=\frac{3}{14} y^{-5 / 2}
$$

for $1 / 4 \leq y \leq 1$.

