Math/Stat 251 Fall 2015

The Maximum and Minimum of Two IID Random Variables (October 30, 2015)

Suppose that X_1 and X_2 are independent and identically distributed (iid) continuous random variables. By *independent*, we mean that

$$P(X_1 \in A, X_2 \in B) = P(X_1 \in A) P(X_2 \in B)$$

for any $A \subseteq \mathbb{R}$ and $B \subseteq \mathbb{R}$. By identically distributed we mean that X_1 and X_2 each have the same distribution function F (and therefore the same density function f).

Two quantities of interest are the maximum and minimum of X_1 and X_2 . It turns out to be surprisingly easy to determine the distribution and density functions of the maximum and minimum.

The two key observations are that

$$\max\{X_1, X_2\} \le x$$
 if and only if both $X_1 \le x$ and $X_2 \le x$

and

$$\min\{X_1, X_2\} > x$$
 if and only if both $X_1 > x$ and $X_2 > x$.

In other words, an upper bound for the maximum gives an upper bound for each of X_1 and X_2 , while a lower bound for the minimum gives a lower bound for each of X_1 and X_2 .

Distribution of $\max\{X_1, X_2\}$

Suppose that $X = \max\{X_1, X_2\}$. By definition, the distribution function of X is

$$F_X(x) = \mathbf{P}(X \le x) = \mathbf{P}(\max\{X_1, X_2\} \le x) = \mathbf{P}(X_1 \le x \text{ and } X_2 \le x)$$
$$= \mathbf{P}(X_1 \le x, X_2 \le x)$$
$$= \mathbf{P}(X_1 \le x) \mathbf{P}(X_2 \le x)$$

using the fact that X_1 and X_2 are independent. However, both X_1 and X_2 have the same distribution function F and the same density function f. This means that

$$\mathbf{P}(X_1 \le x) = F(x) = \int_{-\infty}^{x} f(t) \, \mathrm{d}t \quad \text{and} \quad \mathbf{P}(X_2 \le x) = F(x) = \int_{-\infty}^{x} f(t) \, \mathrm{d}t.$$

Therefore,

$$F_X(x) = F(x) \cdot F(x) = [F(x)]^2.$$

The density function of $X = \max\{X_1, X_2\}$ can now be found by differentiation, namely

$$f_X(x) = \frac{\mathrm{d}}{\mathrm{d}x} F_X(x) = \frac{\mathrm{d}}{\mathrm{d}x} [F(x)]^2 = 2F(x)F'(x) = 2f(x)F(x).$$

Distribution of $\min\{X_1, X_2\}$

Suppose that $Y = \min\{X_1, X_2\}$. By definition, the distribution function of Y is

$$F_Y(y) = \mathbf{P}(Y \le y) = \mathbf{P}(\min\{X_1, X_2\} \le y).$$

However, knowing an upper bound on the minimum is not of any use to us. Instead, we consider

$$F_Y(y) = \mathbf{P}(Y \le y) = 1 - \mathbf{P}(Y > y) = 1 - \mathbf{P}(\min\{X_1, X_2\} > y).$$

This is useful to us since

$$\mathbf{P}(\min\{X_1, X_2\} > y) = \mathbf{P}(X_1 > y, X_2 > y) = \mathbf{P}(X_1 > y) \mathbf{P}(X_2 > y)$$

using the fact that X_1 and X_2 are independent. However, both X_1 and X_2 have the same distribution function F and the same density function f. This means that

$$\mathbf{P}(X_1 > y) = 1 - F(y) = \int_y^{\infty} f(t) dt$$
 and $\mathbf{P}(X_2 > y) = 1 - F(y) = \int_y^{\infty} f(t) dt$.

Therefore,

$$F_Y(y) = 1 - \mathbf{P}(Y > y) = 1 - [1 - F(y)] \cdot [1 - F(y)] = 1 - [1 - F(y)]^2.$$

The density function of $Y = \min\{X_1, X_2\}$ can now be found by differentiation, namely

$$f_Y(y) = \frac{\mathrm{d}}{\mathrm{d}y} F_Y(y) = \frac{\mathrm{d}}{\mathrm{d}y} \left(1 - [1 - F(y)]^2 \right) = 2[1 - F(y)]F'(y) = 2f(y)[1 - F(y)].$$

Example. Suppose that X_1 and X_2 are independent random variables each having the $\text{Exp}(\lambda)$ distribution. Determine the density functions of $\max\{X_1, X_2\}$, and $\min\{X_1, X_2\}$.

Solution. Since X_1 and X_2 are iid $\text{Exp}(\lambda)$ random variables, they have common density function $f(x) = \lambda e^{-\lambda x}$, $x \geq 0$, and common distribution functions

$$F(x) = \begin{cases} 0, & x < 0, \\ 1 - e^{-\lambda x}, & x \ge 0. \end{cases}$$

Thus, the density function of $X = \max\{X_1, X_2\}$ is

$$f_X(x) = 2\lambda e^{-\lambda x} [1 - e^{-\lambda x}]$$

for $x \geq 0$, and the density function of $Y = \min\{X_1, X_2\}$ is

$$f_Y(y) = 2\lambda e^{-2\lambda y}$$

for $y \ge 0$. Note that we recognize the distribution of Y as $Y \sim \text{Exp}(2\lambda)$.