
Math/Stat 251 Fall 2015
Summary of Lecture from October 5, 2015 and October 7, 2015

Until now, all of our examples have involved sample spaces with a finite number of outcomes.
We would now like to consider the case where the sample space contains a continuum of
outcomes; that is, we want to have the sample space S = R. One way to define probabilities
for subsets of R is through the use of an auxiliary function known as a probability density

function. Suppose that the function f : R ! R has the properties that

(a) f(x) � 0 for all x 2 R, and

(b)

Z 1

�1
f(x) dx = 1.

If we define

P (A) =

Z

A

f(x) dx

for any event A ⇢ R, then this defines a probability. Note that

P (;) =
Z

;
f(x) dx = 0, P (S) = P (R) =

Z

R
f(x) dx =

Z 1

�1
f(x) dx = 1,

and if A and B are disjoint, then

P (A [ B) =

Z

A[B

f(x) dx =

Z

A

f(x) dx +

Z

B

f(x) dx = P (A) +P (B) .

Furthermore, since f � 0, we conclude that

P (A) =

Z

A

f(x) dx � 0

and that since A ✓ R, we have

P (A) =

Z

A

f(x) dx 
Z

R
f(x) dx = 1.

That is, 0  P (A)  1 so that P is a legitimate probability.

The following six examples of density functions are of particular importance for this course.
We will be using them continually.

Example 1. Suppose that � > 0 and let

f(x) =

(
�e��x, x � 0,

0, x < 0.

This is the exponential density with parameter �.



Example 2. Suppose that �1 < a < b < 1 and let

f(x) =

8
<

:

1

b � a
, a  x  b,

0, otherwise.

This is the uniform density on the interval [a, b].

Example 3. Suppose that �1 < ✓ < 1 and let

f(x) =
1

⇡
· 1

1 + (x � ✓)2

for �1 < x < 1. This is the Cauchy density with parameter ✓.

Example 4. Suppose that � > 0, ↵ > 0, and let

f(x) =

8
<

:

�↵

�(↵)
x↵�1e��x, x � 0,

0, x < 0.

Here, � is the gamma function defined by

�(↵) =

Z 1

0

x↵�1e�x dx.

This is the gamma density with parameters � and ↵.

Example 5. Suppose that �1 < µ < 1, � > 0, and let

f(x) =
1

�
p
2⇡

exp

⇢
�(x � µ)2

2�2

�

for �1 < x < 1. This is the normal (or Gaussian) density with mean µ and variance �2.

Example 6. Suppose that a > 0, b > 0, and let

f(x) =

8
<

:

�(a + b)

�(a)�(b)
xa�1(1� x)b�1, 0  x  1,

0, otherwise.

This is the beta density with parameters a and b.

In order to verify that these six functions are legitimate density functions, we need to verify
that each is non-negative and integrates to 1. Clearly all six are non-negative. As for the
fact that each integrates to 1, the first three can be verified by direct integration.

Example 1.
Z 1

�1
f(x) dx =

Z 0

�1
f(x) dx+

Z 1

0

f(x) dx =

Z 0

�1
0 dx+

Z 1

0

�e��x dx = �e��x

����
1

0

= 1.



Example 2.

Z 1

�1
f(x) dx =

Z
a

�1
f(x) dx +

Z
b

a

f(x) dx +

Z 1

b

f(x) dx =

Z
a

�1
0 dx +

Z
b

a

dx

b � a
+

Z 1

b

0 dx

=
x

b � a

����
b

a

= 1.

Example 3.

Z 1

�1
f(x) dx =

Z 1

�1

1

⇡
· 1

1 + (x � ✓)2
dx =

1

⇡
arctan(x � ✓)

����
1

�1
=

1

⇡

h⇡

2
�

⇣
�⇡

2

⌘i
= 1.

Example 4. The fact that the gamma density integrates to 1 is a consequence of the fact
that the gamma function is well-defined.

Z 1

�1
f(x) dx =

Z 1

0

�↵

�(↵)
x↵�1e��x dx =

�↵

�(↵)

Z 1

0

u↵�1

�↵�1
e�u

du

�
=

1

�(↵)

Z 1

0

u↵�1e�u du

=
1

�(↵)
· �(↵)

= 1

Multivariable calculus is required to prove that the remaining two examples actually define
legitimate density functions. Since Math 213 is not a prerequisite for this class, we will not
prove these facts.


