Math/Stat 251 Fall 2015
Summary of Lecture from October 5, 2015 and October 7, 2015
Until now, all of our examples have involved sample spaces with a finite number of outcomes. We would now like to consider the case where the sample space contains a continuum of outcomes; that is, we want to have the sample space $S=\mathbb{R}$. One way to define probabilities for subsets of \mathbb{R} is through the use of an auxiliary function known as a probability density function. Suppose that the function $f: \mathbb{R} \rightarrow \mathbb{R}$ has the properties that
(a) $f(x) \geq 0$ for all $x \in \mathbb{R}$, and
(b) $\int_{-\infty}^{\infty} f(x) \mathrm{d} x=1$.

If we define

$$
\mathbf{P}(A)=\int_{A} f(x) \mathrm{d} x
$$

for any event $A \subset \mathbb{R}$, then this defines a probability. Note that

$$
\mathbf{P}(\emptyset)=\int_{\emptyset} f(x) \mathrm{d} x=0, \quad \mathbf{P}(S)=\mathbf{P}(\mathbb{R})=\int_{\mathbb{R}} f(x) \mathrm{d} x=\int_{-\infty}^{\infty} f(x) \mathrm{d} x=1,
$$

and if A and B are disjoint, then

$$
\mathbf{P}(A \cup B)=\int_{A \cup B} f(x) \mathrm{d} x=\int_{A} f(x) \mathrm{d} x+\int_{B} f(x) \mathrm{d} x=\mathbf{P}(A)+\mathbf{P}(B) .
$$

Furthermore, since $f \geq 0$, we conclude that

$$
\mathbf{P}(A)=\int_{A} f(x) \mathrm{d} x \geq 0
$$

and that since $A \subseteq \mathbb{R}$, we have

$$
\mathbf{P}(A)=\int_{A} f(x) \mathrm{d} x \leq \int_{\mathbb{R}} f(x) \mathrm{d} x=1 .
$$

That is, $0 \leq \mathbf{P}(A) \leq 1$ so that \mathbf{P} is a legitimate probability.
The following six examples of density functions are of particular importance for this course. We will be using them continually.

Example 1. Suppose that $\lambda>0$ and let

$$
f(x)= \begin{cases}\lambda e^{-\lambda x}, & x \geq 0 \\ 0, & x<0\end{cases}
$$

This is the exponential density with parameter λ.

Example 2. Suppose that $-\infty<a<b<\infty$ and let

$$
f(x)= \begin{cases}\frac{1}{b-a}, & a \leq x \leq b \\ 0, & \text { otherwise }\end{cases}
$$

This is the uniform density on the interval $[a, b]$.
Example 3. Suppose that $-\infty<\theta<\infty$ and let

$$
f(x)=\frac{1}{\pi} \cdot \frac{1}{1+(x-\theta)^{2}}
$$

for $-\infty<x<\infty$. This is the Cauchy density with parameter θ.
Example 4. Suppose that $\lambda>0, \alpha>0$, and let

$$
f(x)= \begin{cases}\frac{\lambda^{\alpha}}{\Gamma(\alpha)} x^{\alpha-1} e^{-\lambda x}, & x \geq 0 \\ 0, & x<0\end{cases}
$$

Here, Γ is the gamma function defined by

$$
\Gamma(\alpha)=\int_{0}^{\infty} x^{\alpha-1} e^{-x} \mathrm{~d} x
$$

This is the gamma density with parameters λ and α.
Example 5. Suppose that $-\infty<\mu<\infty, \sigma>0$, and let

$$
f(x)=\frac{1}{\sigma \sqrt{2 \pi}} \exp \left\{-\frac{(x-\mu)^{2}}{2 \sigma^{2}}\right\}
$$

for $-\infty<x<\infty$. This is the normal (or Gaussian) density with mean μ and variance σ^{2}.
Example 6. Suppose that $a>0, b>0$, and let

$$
f(x)= \begin{cases}\frac{\Gamma(a+b)}{\Gamma(a) \Gamma(b)} x^{a-1}(1-x)^{b-1}, & 0 \leq x \leq 1 \\ 0, & \text { otherwise }\end{cases}
$$

This is the beta density with parameters a and b.
In order to verify that these six functions are legitimate density functions, we need to verify that each is non-negative and integrates to 1 . Clearly all six are non-negative. As for the fact that each integrates to 1 , the first three can be verified by direct integration.

Example 1.

$$
\int_{-\infty}^{\infty} f(x) \mathrm{d} x=\int_{-\infty}^{0} f(x) \mathrm{d} x+\int_{0}^{\infty} f(x) \mathrm{d} x=\int_{-\infty}^{0} 0 \mathrm{~d} x+\int_{0}^{\infty} \lambda e^{-\lambda x} \mathrm{~d} x=-\left.e^{-\lambda x}\right|_{0} ^{\infty}=1
$$

Example 2.

$$
\begin{aligned}
\int_{-\infty}^{\infty} f(x) \mathrm{d} x=\int_{-\infty}^{a} f(x) \mathrm{d} x+\int_{a}^{b} f(x) \mathrm{d} x+\int_{b}^{\infty} f(x) \mathrm{d} x & =\int_{-\infty}^{a} 0 \mathrm{~d} x+\int_{a}^{b} \frac{\mathrm{~d} x}{b-a}+\int_{b}^{\infty} 0 \mathrm{~d} x \\
& =\left.\frac{x}{b-a}\right|_{a} ^{b}=1
\end{aligned}
$$

Example 3.

$$
\int_{-\infty}^{\infty} f(x) \mathrm{d} x=\int_{-\infty}^{\infty} \frac{1}{\pi} \cdot \frac{1}{1+(x-\theta)^{2}} \mathrm{~d} x=\left.\frac{1}{\pi} \arctan (x-\theta)\right|_{-\infty} ^{\infty}=\frac{1}{\pi}\left[\frac{\pi}{2}-\left(-\frac{\pi}{2}\right)\right]=1
$$

Example 4. The fact that the gamma density integrates to 1 is a consequence of the fact that the gamma function is well-defined.

$$
\begin{aligned}
\int_{-\infty}^{\infty} f(x) \mathrm{d} x=\int_{0}^{\infty} \frac{\lambda^{\alpha}}{\Gamma(\alpha)} x^{\alpha-1} e^{-\lambda x} \mathrm{~d} x=\frac{\lambda^{\alpha}}{\Gamma(\alpha)} \int_{0}^{\infty} \frac{u^{\alpha-1}}{\lambda^{\alpha-1}} e^{-u} \frac{\mathrm{~d} u}{\lambda} & =\frac{1}{\Gamma(\alpha)} \int_{0}^{\infty} u^{\alpha-1} e^{-u} \mathrm{~d} u \\
& =\frac{1}{\Gamma(\alpha)} \cdot \Gamma(\alpha) \\
& =1
\end{aligned}
$$

Multivariable calculus is required to prove that the remaining two examples actually define legitimate density functions. Since Math 213 is not a prerequisite for this class, we will not prove these facts.

