
Math/Stat 251 Fall 2015
Solutions to Assignment #1

Single-Variable Calculus

1. Using a substitution with u = 2x gives∫ ∞
0

e−2x dx = −1

2
e−2x

∣∣∣∣∞
0

=
1

2
.

2. Using parts with u = x and dv = e−2x dx gives∫ ∞
0

xe−2x dx = −1

2
xe−2x

∣∣∣∣∞
0

+
1

2

∫ ∞
0

e−2x dx = 0 +
1

2
· 1

2
=

1

4
.

3. Using parts with u = x2 and dv = e−2x dx gives∫ ∞
0

x2e−2x dx = −1

2
x2e−2x

∣∣∣∣∞
0

+

∫ ∞
0

xe−2x dx = 0 +
1

4
=

1

4
.

4. Using parts with u = x3 and dv = e−2x dx gives∫ ∞
0

x3e−2x dx = −1

2
x3e−2x

∣∣∣∣∞
0

+
3

2

∫ ∞
0

x2e−2x dx = 0 +
3

2
· 1

4
=

3

8
.

5. Using a substitution with u = x1/3 gives∫ ∞
0

x−2/3e−x
1/3

dx =

∫ ∞
0

3e−u du = −3e−u
∣∣∣∣∞
0

= 3.

6. Using a substitution with u = x1/a gives∫ ∞
0

x1/a−1e−x
1/a

dx =

∫ ∞
0

ae−u du = −ae−u
∣∣∣∣∞
0

= a.

7. Using a substitution with u = x1/3 gives∫ ∞
0

x1/3e−2x
1/3

dx =

∫ ∞
0

3u3e−2u du = 3 · 3

8
=

9

8
.

8. Using a substitution with u = x2 gives∫ ∞
0

xe−x
2

dx =
1

2

∫ ∞
0

e−u du = −1

2
e−u
∣∣∣∣∞
0

=
1

2
.

9. Using a substitution with u = ax2 gives∫ ∞
0

xe−ax
2

dx =
1

2a

∫ ∞
0

e−u du = − 1

2a
e−u
∣∣∣∣∞
0

=
1

2a
.



10. Using a substitution with u = 1− x gives∫ 1

0
x(1− x)3 dx = −

∫ 0

1
(1− u)u3 du =

∫ 1

0
u3(1− u) du =

∫ 1

0
u3 − u4 du =

1

4
− 1

5
=

1

20
.

11. Using a substitution with u = 1− x gives∫ 1

0
x2(1−x)3 dx = −

∫ 0

1
(1−u)2u3 du =

∫ 1

0
u3(1−u)2 du =

∫ 1

0
u3−2u4+u5 du =

1

4
−2

5
+

1

6
=

1

60
.

12. Recognizing the antiderivative directly gives∫ ∞
−∞

1

x2 + 1
dx = arctan(x)

∣∣∣∣∞
−∞

=
π

2
−
(
−π

2

)
= π.

13. Using a substitution with u = x2 + 1 gives∫ ∞
0

x

x2 + 1
dx =

∫ ∞
1

1

2u
du =

1

2
log |u|

∣∣∣∣∞
1

=∞.

Thus, the value of this integral does not exist as a real number.

14. By writing∫ ∞
−∞

x

x2 + 1
dx =

∫ ∞
0

x

x2 + 1
dx+

∫ 0

−∞

x

x2 + 1
dx =

∫ ∞
0

x

x2 + 1
dx−

∫ ∞
0

x

x2 + 1
dx =∞−∞,

we see that the value of this integral does not exist. (Recall that ∞ − ∞ is a so-called
indeterminant form). Note that the integrand is an odd function, and so we might be tempted
to say that the integral of an odd function over a symmetric interval is 0. While this fact is
true for symmetric finite intervals (−a, a), we need to be careful when the symmetric interval
is (−∞,∞). With this particular integral there is an infinite area above the axis to the right
of 0 as well as an infinite area below the axis to the left of 0. Again, we might be tempted to
say that these areas are equal and so they cancel out giving a value of 0 to the integral. But
∞ is not a real number and cannot be manipulated like that. We cannot say that∞−∞ = 0.
Thus, we must conclude that the value of this integral does not exist.

15. Recognizing the antiderivative directly gives∫ ∞
a

1

x3
dx = −1

2
x−2

∣∣∣∣∞
a

=
1

2a2
.

16. Recognizing the antiderivative directly gives∫ ∞
a

1

xb
dx = − 1

b− 1
x−(b−1)

∣∣∣∣∞
a

=
a1−b

b− 1
.



Some Sums

1. Recall that if r satisfies −1 < r < 1, then

∞∑
j=0

rj =
1

1− r

gives the value of the geometric series. Thus,

∞∑
j=0

3−j =
∞∑
j=0

(1/3)j =
1

1− 1/3
=

3

2
.

2. It is a fact that if r satisfies −1 < r < 1, then

∞∑
j=1

jrj =
r

(1− r)2
.

Here is how you prove this fact. Observe that

d

dr
rj = jrj−1.

Therefore,
∞∑
j=1

jrj = r

∞∑
j=1

jrj−1 = r

∞∑
j=1

d

dr
rj .

If we now interchange the derivative and the summation, then we get

∞∑
j=1

d

dr
rj =

d

dr

∞∑
j=1

rj .

However, if we notice that

∞∑
j=0

rj = r0 +

∞∑
j=1

rj = 1 +

∞∑
j=1

rj ,

then we conclude that

∞∑
j=1

rj =
∞∑
j=0

rj − 1 =
1

1− r
− 1 =

r

1− r
.

Putting this back in to the earlier expressions gives

∞∑
j=1

jrj = r · d

dr

∞∑
j=1

rj = r · d

dr

(
r

1− r

)
= r · 1

(1− r)2
=

r

(1− r)2
.

Hence, we find
∞∑
j=1

j3−j =
∞∑
j=1

j(1/3)j =
1/3

(1− 1/3)2
=

3

4
.



3. Recall that if −∞ < x <∞, then the power series (i.e., Taylor series at 0 or Maclaurin series)
for ex is

ex =
∞∑
j=0

xj

j!
.

Thus,
∞∑
j=0

3−j

j!
=
∞∑
j=0

(1/3)j

j!
= e1/3.


