Stat 160 Fall 2008
Solutions to Assignment \#6
11.32 As noted in the first box on page 278, the mean and standard deviation of \bar{x} are μ and σ / \sqrt{n}, respectively. If the heights of young men have standard deviation 2.8 inches, then the sample mean of a SRS of n young men has standard deviation

$$
\frac{2.8}{\sqrt{n}}
$$

If we want to reduce the standard deviation of the sample mean to 0.5 inches, then we must choose n to satisfy

$$
\frac{2.8}{\sqrt{n}}=0.5
$$

Solving for \sqrt{n} gives $\sqrt{n}=2.8 / 0.5=5.6$ and so

$$
n=5.6^{2}=31.36
$$

Since we cannot have fractional people, we must take $n=32$. (Note that taking $n=31$ is not suitable for the resulting standard deviation would then be larger than 0.5.)
11.34 (a) If X denotes the height of a male student on campus, then X has a normal $N(70,2.8)$ distribution. Thus, the required probability is

$$
\begin{aligned}
P(69 \leq X \leq 71) & =P\left(\frac{69-70}{2.8} \leq \frac{X-70}{2.8} \leq \frac{71-70}{2.8}\right) \\
& =P(-0.36 \leq Z \leq 0.36) \\
& =0.6406-0.3594 \\
& =0.2812
\end{aligned}
$$

using Table A.
11.34 (b) If \bar{x} denotes the mean heights of $n=32$ students, then \bar{x} has a normal $N(70,2.8 / \sqrt{32})=$ $N(70,0.495)$ distribution. Thus, the required probability is

$$
\begin{aligned}
P(69 \leq \bar{x} \leq 71) & =P\left(\frac{69-70}{0.495} \leq \frac{\bar{x}-70}{0.495} \leq \frac{71-70}{0.495}\right) \\
& =P(-2.02 \leq Z \leq 2.02) \\
& =0.9783-0.0217 \\
& =0.9566
\end{aligned}
$$

using Table A.
Alternatively, you can answer this question without knowing the sample size $n=32$. Since n is chosen to make the margin of error of \bar{x} equal to 0.5 , we have that \bar{x} has a normal $N(70,0.5)$ distribution. Thus, the required probability is

$$
\begin{aligned}
P(69 \leq \bar{x} \leq 71) & =P\left(\frac{69-70}{0.5} \leq \frac{\bar{x}-70}{0.5} \leq \frac{71-70}{0.5}\right) \\
& =P(-2 \leq Z \leq 2) \\
& =0.9772-0.0228 \\
& =0.9544
\end{aligned}
$$

using Table A.
11.40 Let X denote the return on US common stock so that X has a normal $N(8.7,20.2)$ distribution. If \bar{x} denotes Andrew's average over the next $n=40$ years, then \bar{x} has a normal $N(8.7,20.2 / \sqrt{40})=N(8.7,3.1939)$ distribution. Thus, the probability that the mean return over the next 40 years exceeds 10% is

$$
P(\bar{x}>10)=P\left(\frac{\bar{x}-8.7}{3.1939}>\frac{10-8.7}{3.1939}\right)=P(Z>0.41)=1-0.6591=0.3409
$$

using Table A. The probability that the mean return over the next 40 years is less than 5% is

$$
P(\bar{x}<5)=P\left(\frac{\bar{x}-8.7}{3.1939}<\frac{5-8.7}{3.1939}\right)=P(Z<-1.16)=0.1230
$$

also using Table A.
12.30 (a) The probability that the portfolio goes up three consecutive years is

$$
P(\mathrm{Up} \mathrm{Up} \mathrm{Up})=P(\mathrm{Up}) \cdot P(\mathrm{Up}) \cdot P(\mathrm{Up})=(0.65)(0.65)(0.65)=0.274625
$$

12.30 (b) The probability that the portfolio goes in the same direction for three consecutive years is

$$
\begin{aligned}
P(\mathrm{Up} \text { Up Up or Down Down Down }) & =P(\mathrm{Up} \mathrm{Up} \mathrm{Up})+P(\text { Down Down Down }) \\
& =P(\mathrm{Up}) \cdot P(\mathrm{Up}) \cdot P(\mathrm{Up})+P(\text { Down }) \cdot P(\text { Down }) \cdot P(\text { Down }) \\
& =(0.65)^{3}+(0.35)^{3} \\
& =0.3175
\end{aligned}
$$

13.24 (a) The distribution of the number who have visited an online auction site in the past month is binomial with parameters $n=12$ and $p=0.50$.
13.24 (b) The probability that exactly 8 of the 12 have visited an auction site in the past month is

$$
P(8 \text { of } 12)=\binom{12}{8}(0.5)^{8}(1-0.5)^{12-8}=\binom{12}{8}(0.5)^{8}(0.5)^{4}=\binom{12}{8}(0.5)^{12}=0.1208496
$$

13.26 (a) The distribution of X is binomial with parameters $n=5$ and $p=0.65$.
13.26 (b) The possible values of X are $0,1,2,3,4$, and 5.
13.26 (c) We find

$$
\begin{gathered}
P(X=0)=\binom{5}{0}(0.65)^{0}(1-0.65)^{5-0}=(0.35)^{5}=0.005252187, \\
P(X=1)=\binom{5}{1}(0.65)^{1}(1-0.65)^{5-1}=5(0.65)(0.35)^{4}=0.04877031, \\
P(X=2)=\binom{5}{2}(0.65)^{2}(1-0.65)^{5-2}=10(0.65)^{2}(0.35)^{3}=0.1811469, \\
P(X=3)=\binom{5}{3}(0.65)^{3}(1-0.65)^{5-3}=10(0.65)^{3}(0.35)^{2}=0.3364156, \\
P(X=4)=\binom{5}{4}(0.65)^{4}(1-0.65)^{5-4}=5(0.65)^{4}(0.35)=0.3123859, \\
P(X=5)=\binom{5}{5}(0.65)^{5}(1-0.65)^{5-5}=(0.65)^{5}=0.1160291 .
\end{gathered}
$$

13.26 (d) The mean is $\mu=n p=5 \times 0.65=3.3$ and the standard deviation is $\sigma=\sqrt{n p(1-p)}=$ $\sqrt{5(0.65)(0.35)}=1.066536$.
13.30 (a) Since $n=100$ and $p=0.75$, if we denote Jodi's score by X, then the distribution of X is approximately normal with mean $\mu=n p=100 \times 0.75=75$ and standard deviation $\sigma=$ $\sqrt{n p(1-p)}=\sqrt{100 \times 0.75 \times 0.25}=\sqrt{18.75}=4.33$. Thus, using the normal approximation to the binomial, the required probability is

$$
\begin{aligned}
P(X \leq 70) & =P\left(\frac{X-75}{4.33} \leq \frac{70-75}{4.33}\right) \\
& =P(Z \leq-1.15) \\
& =0.1251
\end{aligned}
$$

using Table A.
13.30 (b) If the test instead contains 250 questions and X again denotes Jodi's score, then the distribution of X is approximately normal with mean $\mu=n p=250 \times 0.75=187.5$ and standard deviation $\sigma=\sqrt{n p(1-p)}=\sqrt{250 \times 0.75 \times 0.25}=\sqrt{46.875}=6.8465$. If Jodi is to score 70% or lower, then her score out of 250 must be less than $250 * 0.70=175$. Thus, using the normal approximation to the binomial, the required probability is

$$
\begin{aligned}
P(X \leq 175) & =P\left(\frac{X-187.5}{6.8465} \leq \frac{175-187.5}{6.8465}\right) \\
& =P(Z \leq-1.83) \\
& =0.0336
\end{aligned}
$$

using Table A.

