Stat 160 Fall 2008
(Brief) Solutions to Assignment \#5
10.8 (a) Yes, since (i) all probabilities are between 0 and 1 , and (ii) their sum is 1 .
10.8 (b) $0.20+0.15=0.35$
10.9 (a) The? should be replaced by 0.11 since the sum of all probabilities must be 1 .
10.9 (b) $P($ not English $)=1-0.59=0.41$
10.10 Model 1 is NOT legitimate since the sum of the probabilities is not 1 . Model 2 is legitimate since all probabilities are between 0 and 1 , and they add up to 1 . Model 3 is NOT legitimate since the sum of the probabilities is not 1 . Model 4 is NOT legitimate since not all probabilities are between 0 and 1 (as well, the sum of the probabilities is not 1).
10.12 (a) Notice that (i) all probabilities are between 0 and 1 , and (ii) their sum is 1.
10.12 (b) $P(X<7)=0.43$ and represents the probability that a randomly chosen young person did not watch television every day in the past week.
10.12 (c) $P(X \geq 1)=0.96$
10.37 (a) $\frac{4176000}{9094000}=\frac{4176}{9094}=0.4592039$
10.37 (b) $1-\frac{4176}{9094}=0.5407961$
10.38 (a) This is a legitimate probability assignment since (i) all probabilities are between 0 and 1 , and (ii) their sum is 1 .
10.38 (b) P (not studying English) $=1-0.59=0.41$
10.38 (c) $0.09+0.03+0.26=0.38$
10.39 (a) $1-(0.18+0.17+0.15+0.12+0.11+0.11)=0.16$
10.39 (b) $1-(0.18+0.17)=0.65$
10.40 (a) $1-(0.14+0.13+0.20+0.13+0.16)=0.24$
10.40 (b) $1-0.13=0.87$
10.40 (c) $0.14+0.20+0.13=0.47$
10.45 (a) We will abbreviate by first initial, (A)bby, (D)eborah, (M)ei-Ling, (S)am, (R)oberto, so that all possible simple random samples of size 2 are

$$
(A, D),(A, M),(A, S),(A, R),(D, M),(D, S),(D, R),(M, S),(M, R),(S, R)
$$

Note that order does NOT matter so that (A, D) and (D, A) are the same.
10.45 (b) $\frac{1}{10}$
10.45 (c) There are 4 pairs that contain M so that the probability Mei-Ling is chosen is $\frac{4}{10}$.
10.45 (d) There are 3 pairs that contain neither S nor R so that the required probability is $\frac{3}{10}$.
10.46 Done in class on September 30.

