Statistics 151 Fall 2006 (Kozdron) Midterm \#2 - Solutions

1. We calculate the sample mean as

$$
\bar{X}=\frac{55+61+61+64+65+66}{6}=62
$$

and the sample variance as

$$
\begin{aligned}
S^{2} & =\frac{(55-62)^{2}+(61-62)^{2}+(61-62)^{2}+(64-62)^{2}+(65-62)^{2}+(66-62)^{2}}{6-1} \\
& =\frac{49+1+1+4+9+16}{5}=\frac{80}{5}=16 .
\end{aligned}
$$

Thus, the sample standard deviation is $S=\sqrt{16}=4$. Therefore, a 95% confidence interval for μ is given by

$$
\bar{X} \pm t_{0.025,5} \frac{S}{\sqrt{n}} \quad \text { or } \quad 62 \pm 2.571 \cdot \frac{4}{\sqrt{6}} .
$$

(Note that a t-value is required since σ is unknown and n is less than 30.)
2. (a) Since $(0.630,0.733)$ is a 95% confidence interval for p with $\hat{p}=0.681$, and since

$$
\hat{p} \pm z_{\alpha / 2} \sqrt{\frac{\hat{p}(1-\hat{p})}{n}}
$$

is the general form of a confidence interval for p, we conclude that

$$
0.630=0.681-1.96 \sqrt{\frac{0.681 \cdot 0.319}{n}}
$$

Solving for n gives $n=321$.
(b) The proportion of children respondents from Saskatchewan who were overweight is $\hat{p}=$ $51 / 85=0.60$. Therefore, a 95% confidence interval for p, the true proportion of children Saskatchewan residents who are overweight is

$$
\hat{p} \pm z_{0.025} \sqrt{\frac{\hat{p}(1-\hat{p})}{n}} \text { or } 0.60 \pm 1.96 \sqrt{\frac{0.60 \cdot 0.40}{85}} \text { or }(0.496,0.704)
$$

(c) Since the 95% confidence intervals for adults $(0.630,0.733)$ and children $(0.496,0.704)$ residents of Saskatchewan overlap, there is no significant evidence to suggest that they have different overweight rates.
3. If X denotes the BMD value, then X is normally distributed with mean 0.85 and standard deviation 0.11 . Therefore,

$$
P(X<0.74)=P\left(\frac{X-0.85}{0.11}<\frac{0.74-0.85}{0.11}\right)=P(Z<-1)=0.500-0.3413=0.1587
$$

from Table E.
(a) Therefore, the probability that all 4 of them have BMD values less than 0.74 is

$$
\binom{4}{4}(0.1587)^{4}(0.8413)^{0}=(0.1587)^{4}=0.000634
$$

(b) The probability that the average of their 4 BMD values is less than 0.74 is

$$
P(\bar{X}<0.74)=P\left(\frac{\bar{X}-0.85}{0.11 / \sqrt{4}}<\frac{0.74-0.85}{0.11 / \sqrt{4}}\right)=P(Z<-2)=0.500-0.4772=0.0228
$$

from Table E.
4. Since any z-based confidence interval for a proportion must be centred at the sample proportion, we conclude that Michael's confidence interval of $(0.75,0.89)$ must be incorrect since it is not centred at 0.80 (but rather at 0.82).
5. Let μ denote the true difference between scented and unscented scores. Then the appropriate hypotheses for the researcher are:
$H_{0}: \mu=0$,
$H_{1}: \mu>0$.
6. The only correct statement is (ii).

