Stat 151.003 (Kozdron) Fall 2006
Solutions to Practice Problems for Midterm \#2
1.
(a) An approximate 95% confidence interval for the true daily parking revenues is

$$
\left(\bar{X}-z_{0.025} \cdot \frac{S}{\sqrt{n}}, \bar{X}+z_{0.025} \cdot \frac{S}{\sqrt{n}}\right)
$$

or

$$
\left(126-1.96 \cdot \frac{15}{\sqrt{44}}, 126+1.96 \cdot \frac{15}{\sqrt{44}}\right)
$$

or
(b) Based on the sample mean obtained, we are 95% confident that the true mean lies between 121.6 and 130.4.
(c) Yes, the consultant could have been correct since the predicted average of $\$ 130$ per day falls within the 95% confidence inteveral.

2.

(a) Let X denote the IQ score of one randomly selected child from this population so that X is normal with mean 100 and standard deviation 16. Therefore,
$P(80<X<120)=P\left(\frac{80-100}{16}<\frac{X-100}{16}<\frac{120-100}{16}\right)=P(-1.25<Z<1.25)=0.7888$
where the last equality followed from Table E.
(b) If \bar{X} denotes the average IQ score for these five randomly selected children, then \bar{X} is normal with mean 100 and standard deviation $16 / \sqrt{5}$. Therefore, $P(80<\bar{X}<120)=P\left(\frac{80-100}{16 / \sqrt{5}}<\frac{\bar{X}-100}{16 / \sqrt{5}}<\frac{120-100}{16 / \sqrt{5}}\right)=P(-2.80<Z<2.80)=0.9948$.
(c) From (a), we conclude that the probability one child has a score less than 80 is $p=(1-$ $0.7888) / 2=0.1056$. Therefore, the probability that one of them will have an IQ score of 80 or less and four will have IQ scores higher than 80 is

$$
\binom{5}{1} p(1-p)^{4}=\frac{5!}{1!4!}(0.8944)^{4}(0.1056)=0.3379
$$

3. An approximate 95% confidence interval for the delay time of Airline A is

$$
\left(\bar{X}-t_{0.025,19} \cdot \frac{S}{\sqrt{n}}, \bar{X}+t_{0.025,19} \cdot \frac{S}{\sqrt{n}}\right)
$$

or

$$
\left(30-2.093 \cdot \frac{10}{\sqrt{20}}, 30+2.093 \cdot \frac{10}{\sqrt{20}}\right)
$$

or
$(25.3,34.7)$.
An approximate 95% confidence interval for the delay time of Airline W is

$$
\left(\bar{X}-t_{0.025,19} \cdot \frac{S}{\sqrt{n}}, \bar{X}+t_{0.025,19} \cdot \frac{S}{\sqrt{n}}\right)
$$

or

$$
\left(20-2.093 \cdot \frac{15}{\sqrt{20}}, 20+2.093 \cdot \frac{15}{\sqrt{20}}\right)
$$

or
(13.0, 27.0).

Since the two 95% confidence intervals overlap, we are 95% confident that there is no significant difference in the true mean delay times for Airline A and Airline W. Therefore, if the decision to recommend an airline is made on the basis of the mean waiting time only, then both airlines are equivalent. Flip a coin to pick one! (Of course, other correct answers are valid. I chose to use a t-based confidence interval since the data are only approximately normally distributed, and there is a small sample size. If you want to argue that the population is exactly normal with a known standard deviation so that a z-based confidence is appropriate, that would be acceptable.)

4.

(a) The approximate distribution of the mean NOX emission level \bar{X} for the company's cars is normal with mean 0.9 grams per kilometre and standard deviation $0.15 / \sqrt{125}$ grams per kilometre.
(b) We seek L such that $P(\bar{X}>L)=0.01$. Normalizing gives

$$
P(\bar{X}>L)=P\left(\frac{\bar{X}-0.9}{0.15 / \sqrt{125}}>\frac{L-0.9}{0.15 / \sqrt{125}}\right)=P\left(Z>\frac{L-0.9}{0.15 / \sqrt{125}}\right)=0.01 .
$$

From Table E we find $P(Z>2.33)=0.01$. This then gives

$$
\frac{L-0.9}{0.15 / \sqrt{125}}=2.33
$$

so that $L=0.9312$.
5. Let p denote the true proportion of spinach plants who are adversely affected by sulfur dioxide. You then need to make a decision as to what is an appropriate rate of severe leaf damage is. I believe that it is reasonable to assume that sulfur dioxide has no effect if at most $1 / 3$ of spinach plants are affected. Therefore,

- H_{0} : no effect: $p \leq 1 / 3$,
- H_{1} : an adverse effect: $p>1 / 3$.

