Stat 151.003 Fall 2006 (Kozdron)
Solutions to Assignment \#5
Page 340 \#10: We compute the sample mean for these 8 data points as

$$
\bar{X}=\frac{60+56+60+55+70+55+60+55}{8}=\frac{471}{8}=58.875 .
$$

We compute the sample variance as

$$
S^{2}=\frac{\sum X^{2}-\frac{\left(\sum X\right)^{2}}{n}}{n-1}=\frac{27911-\frac{471^{2}}{8}}{7}=25.84
$$

so that the sample standard deviation is $S=5.08$. A 90% confidence interval for the mean for the salaries of substitute teachers in the region is given by

$$
\left(\bar{X}-t_{0.05,7} \cdot \frac{S}{\sqrt{n}}, \bar{X}+t_{0.05,7} \cdot \frac{S}{\sqrt{n}}\right)
$$

or

$$
\left(58.875-1.895 \cdot \frac{5.08}{\sqrt{8}}, 58.875+1.895 \cdot \frac{5.08}{\sqrt{8}}\right)
$$

or
(55.5, 62.3).

Page 340 \#12: An approximate 99% confidence interval for the true mean time taken to change a water pump based on the average of these 6 employees is given by

$$
\left(\bar{X}-t_{0.005,5} \cdot \frac{S}{\sqrt{n}}, \bar{X}+t_{0.005,5} \cdot \frac{S}{\sqrt{n}}\right)
$$

or

$$
\left(18-4.032 \cdot \frac{3}{\sqrt{6}}, 18+4.032 \cdot \frac{3}{\sqrt{6}}\right)
$$

or

$$
(13.06,22.94) .
$$

Page $340 \mathbf{\# 2 0}$: We compute the sample mean for these 10 data points as

$$
\bar{X}=\frac{61+12+6+40+27+38+93+5+13+40}{10}=\frac{335}{10}=33.5 .
$$

We compute the sample variance as

$$
S^{2}=\frac{\sum X^{2}-\frac{\left(\sum X\right)^{2}}{n}}{n-1}=\frac{18117-\frac{335^{2}}{10}}{9}=766.06
$$

so that the sample standard deviation is $S=27.7$. A 98% confidence interval for the true mean AQI for these metropolitan areas is

$$
\left(\bar{X}-t_{0.01,9} \cdot \frac{S}{\sqrt{n}}, \bar{X}+t_{0.01,9} \cdot \frac{S}{\sqrt{n}}\right)
$$

or

$$
\left(33.5-2.821 \cdot \frac{27.7}{\sqrt{10}},\left(33.5-2.821 \cdot \frac{27.7}{\sqrt{10}}\right)\right.
$$

or

Page 346 \#4: The point estimate for the proportion of obese people living in Miami is $\hat{p}=\frac{27}{100}$. An approximate 90% confidence interval for the true proportion of obese people in Miami is therefore given by

$$
\left(\hat{p}-z_{0.05} \sqrt{\frac{\hat{p}(1-\hat{p})}{n}}, \hat{p}+z_{0.05} \sqrt{\frac{\hat{p}(1-\hat{p})}{n}}\right)
$$

or

$$
\left(\frac{27}{100}-1.645 \sqrt{\frac{27 / 100 \cdot 73 / 100}{100}}, \frac{27}{100}-1.645 \sqrt{\frac{27 / 100 \cdot 73 / 100}{100}}\right)
$$

or

$$
(0.197,0.343) .
$$

Page 359 \#14: An approximate 99% confidence interval for the true mean weight of minivans based on the average of these 40 minivans is given by

$$
\left(\bar{X}-z_{0.005} \cdot \frac{S}{\sqrt{n}}, \bar{X}+z_{0.005} \cdot \frac{S}{\sqrt{n}}\right)
$$

or

$$
\left(4150-2.576 \cdot \frac{480}{\sqrt{40}}, 4150-2.576 \cdot \frac{480}{\sqrt{40}}\right)
$$

or
(3954.5, 4345.5).

Page 359 \#20: The point estimate for the proportion of workers who ride the bus to work each day is $\hat{p}=\frac{53}{75}$. An approximate 95% confidence interval for the true proportion of workers who ride the bus to work each day is

$$
\left(\hat{p}-z_{0.025} \sqrt{\frac{\hat{p}(1-\hat{p})}{n}}, \hat{p}+z_{0.025} \sqrt{\frac{\hat{p}(1-\hat{p})}{n}}\right)
$$

or

$$
\left(\frac{53}{75}-1.96 \sqrt{\frac{53 / 75 \cdot 22 / 75}{75}}, \frac{53}{75}-1.96 \sqrt{\frac{53 / 75 \cdot 22 / 75}{75}}\right)
$$

or

