Stat 151.003 Fall 2006 (Kozdron)
Solutions to Assignment \#3

1. Review Exercise page $\mathbf{2 2 3} \mathbf{\# 1 0}$. Let J be the event that John will purchase a new car, and let M be the event that Mary will purchase a new car. Then we know that $P(J)=$ $0.39, P(M)=0.73$, and $P(M$ and $J)=0.36$. Therefore, $P(M$ or $J)=P(M)+P(J)-$ $P(M$ and $J)=0.39+0.73-0.36=0.76$, and so the probability that neither John nor Mary will purchase a new car is $1-0.76=0.24$.

Review Exercise page 259 \#14. If a success is defined as "ride the train to work," then $p=P(S)=0.30$. Therefore, if there are $n=10$ workers, we find

$$
P(10 \text { successes })=\binom{10}{5}(0.30)^{5}(0.70)^{5}=\frac{10!}{5!(10-5)!}(0.30)^{5}(0.70)^{5}=0.103
$$

Review Exercise page 259 \#18. If a success is defined as "absent from the meeting," then $p=P(S)=0.10$. Therefore, if there are $n=50$ members, we find the expected number who will be absent from each meeting to be $n \cdot p=50 \cdot 0.10=5$. The corresponding variance is $n \cdot p \cdot(1-p)=50 \cdot 0.10 \cdot 0.90=4.5$ and so the standard deviation is $\sqrt{4.5}=2.12$.
2. (a) There are four sample points in this experiment. Drawing a tree diagram, we find that the sample space is $S=\{(M U, R S) ;(M U, R U) ;(M S, R U) ;(M S, R S)\}$ where we have used $M S$ for math successful, $M U$ for math unsuccessful, $R S$ for reading successful, and $R U$ for reading unsuccessful.
2. (b) If R is the event that the reading program is successful, then there are two sample points in R, namely $R=\{(M U, R S) ;(M S, R S)\}$. If M is the event that the math program is successful, then there are two sample points in M, namely $M=\{(M S, R U) ;(M S, R S)\}$.
2. (c) There are three sample points in the event " R or M," namely R or M

$$
=\{(M U, R S) ;(M S, R U) ;(M S, R S)\} .
$$

2. (d) There is one sample point in the event " R and M," namely R and $M=\{(M S, R S)\}$.
3. (a) This is a binomial probability problem. If we define "success" as "not registered to vote" then the probability of success is $p=0.45$. If there are $n=10$ trials, then the probability of observing exactly 5 successes is

$$
P(5)=\binom{10}{5}(0.45)^{5}(0.55)^{5}=\frac{10!}{5!(10-5)!}(0.45)^{5}(0.55)^{5}=0.2340
$$

3. (b) Using the same notation as in 3. (a), we have

$$
\begin{aligned}
P(2 \text { or fewer successes }) & =P(0)+P(1)+P(2) \\
& =\binom{10}{0}(0.45)^{0}(0.55)^{10}+\binom{10}{1}(0.45)^{1}(0.55)^{9}+\binom{10}{2}(0.45)^{2}(0.55)^{8} \\
& =0.0025+0.0207+0.0763 \\
& =0.0995 .
\end{aligned}
$$

4. (a) If 68.26% are painted within 2.5 to 3.5 hours, if 95.44% are painted within 2 to 4 hours, and if painting times X are believed to be normally distributed (with unknown mean μ and unknown variance σ^{2}), then we know

$$
P(2<X<4)=0.9544 \text { and } P(2.5<X<3.5)=0.6826
$$

However, since 95.44% of the area under a bell curve lies within two standard deviations of the mean, and since 68.26% of the area under a bell curve lies within one standard deviation of the mean, we can conclude that if Z is a standard normal then

$$
\begin{equation*}
P(-2<Z<2)=0.9544 \text { and } P(-1<Z<1)=0.6826 . \tag{1}
\end{equation*}
$$

We can then standardize X as follows:

$$
\begin{equation*}
P\left(\frac{2-\mu}{\sigma} \leq \frac{X-\mu}{\sigma} \leq \frac{4-\mu}{\sigma}\right)=P\left(\frac{2-\mu}{\sigma} \leq Z \leq \frac{4-\mu}{\sigma}\right)=0.9544 . \tag{2}
\end{equation*}
$$

Similarly,

$$
\begin{equation*}
P\left(\frac{2.5-\mu}{\sigma} \leq \frac{X-\mu}{\sigma} \leq \frac{3.5-\mu}{\sigma}\right)=P\left(\frac{2.5-\mu}{\sigma} \leq Z \leq \frac{3.5-\mu}{\sigma}\right)=0.6826 . \tag{3}
\end{equation*}
$$

By comparing (1) with (2) and (3), we see that we must have

$$
\frac{2-\mu}{\sigma}=-2 \text { and } \frac{4-\mu}{\sigma}=2
$$

as well as

$$
\frac{2.5-\mu}{\sigma}=-1 \text { and } \frac{3.5-\mu}{\sigma}=1 .
$$

Solving gives $\mu=3$.
4. (b) If $\mu=3$, then since $\frac{4-\mu}{\sigma}=2$ we find $\sigma=\frac{1}{2}$.
4. (c) The required probability is

$$
P(X \leq 3)=P\left(\frac{X-3}{1 / 2} \leq \frac{3-3}{1 / 2}\right)=P(Z \leq 0)=0.500
$$

where Z is $N(0,1)$ and Table E was used to calculate the last expression.
4. (d) The required probability is

$$
P(2 \leq X \leq 3)=P\left(\frac{2-3}{1 / 2} \leq \frac{X-3}{1 / 2} \leq \frac{3-3}{1 / 2}\right)=P(-2 \leq Z \leq 0)=P(0 \leq Z \leq 2)=0.4772
$$

where Z is $N(0,1)$ and Table E was used to calculate the last expression.
4. (e) The required probability is

$$
P(X \leq 2)=P\left(\frac{X-3}{1 / 2} \leq \frac{2-3}{1 / 2}\right)=P(Z \leq-2)=P(Z \geq 2)=0.500-0.4772=0.0228
$$

where Z is $N(0,1)$ and Table E was used to calculate the last expression.
4. (f) The required probability is

$$
P(X>2)=1-P(X \leq 2)=1-0.0228=0.9772
$$

using the result of 4 . (e).

