Solutions to Math 135 Prelim \#2

1. (a) $A B=\left[\begin{array}{ll}-2 & 1 \\ -3 & 2\end{array}\right]\left[\begin{array}{cc}-1 & 2 \\ 3 & 3\end{array}\right]=\left[\begin{array}{cc}5 & -1 \\ 9 & 0\end{array}\right]=\left[\begin{array}{cc}5 & 25 \\ 9 & 0\end{array}\right] \operatorname{MOD} 26$.
(b) If $C=\left[\begin{array}{cc}5 & 25 \\ 9 & 0\end{array}\right] \operatorname{MOD} 26$, then $\operatorname{det}(C)=-225=9 \operatorname{MOD} 26$. We find $\operatorname{det}(C)^{-1}=3 \operatorname{MOD} 26$ since $9(3)-1 \equiv 0(\bmod 26)$, and so

$$
C^{-1}=3\left[\begin{array}{cc}
0 & -25 \\
-9 & 5
\end{array}\right]=\left[\begin{array}{cc}
0 & -75 \\
-27 & 15
\end{array}\right]=\left[\begin{array}{cc}
0 & 3 \\
25 & 15
\end{array}\right] \operatorname{MOD} 26 .
$$

2. (a) ELVES $=4 \times 26^{4}+11 \times 26^{3}+21 \times 26^{2}+4 \times 26+18=2035558$
(b) $2^{7}+2^{6}=2^{4}+2^{3}+1=128+64+16+8+1=217$
(c) $123=64+56+3=1 \times 8^{2}+7 \times 8+3=173$
(d) $a+b=1001011$ and $a-b=100001$
3. (a) Converting both the plaintext and keyword to their numerical equivalents, and adding modulo 26 gives

x	6	0	13	3	0	11	5	19	7	4	6	17	4	24
k	1	8	11	1	14	1	8	11	1	14	1	8	11	1
$y=(x+k)$ MOD 26	7	8	24	4	14	12	13	4	8	18	7	25	15	25

and so converting back gives the ciphertext HIYEOMN EIS HZPZ.
(b) We begin by finding the numerical equivalents of the ciphertext and the key

plain x										
key	X	V	-	X	V	-	X	V	-	X
k	23	21	-	23	21	-	23	21	-	23
cipher	P	K	S	F	I	H	Q	D	N	B
y	15	10	18	5	8	7	16	3	13	1

Since $y=(x+k)$ MOD 26 we can subtract modulo 26 to find (part of) the plaintext row, namely

$$
\begin{array}{c|cccccccccc}
x & 18 & 15 & - & 8 & 13 & - & 19 & 8 & - & 4 \\
\text { plain } & \mathrm{S} & \mathrm{P} & - & \mathrm{I} & \mathrm{~N} & - & \mathrm{T} & \mathrm{I} & - & \mathrm{E}
\end{array}
$$

It appears that the plaintext is SPRING TIME. This allows us to fill in the missing values in the table and conclude that the numerical equivalent of the last letter of the keyword is 1 . Therefore, the keyword is XVB.
4. (a) If $A=\left[\begin{array}{ll}4 & 3 \\ 3 & 1\end{array}\right]$, then $\operatorname{det}(A)=-5=21 \operatorname{MOD} 26$. Therefore, $\operatorname{det}(A)^{-1}=5 \operatorname{MOD} 26$ since $21(5)-1 \equiv 0(\bmod 26)$. This gives $A^{-1}=5\left[\begin{array}{cc}1 & -3 \\ -3 & 4\end{array}\right]=\left[\begin{array}{cc}5 & -15 \\ -15 & 20\end{array}\right]=\left[\begin{array}{cc}5 & 11 \\ 11 & 20\end{array}\right] \operatorname{MOD} 26$. The ciphertext matrix corresponding to ELPF is $Y=\left[\begin{array}{cc}4 & 15 \\ 11 & 5\end{array}\right]$ and so the plaintext matrix is $A^{-1} Y=\left[\begin{array}{cc}5 & 11 \\ 11 & 20\end{array}\right]\left[\begin{array}{cc}4 & 15 \\ 11 & 5\end{array}\right]=\left[\begin{array}{cc}11 & 0 \\ 4 & 5\end{array}\right]$ MOD 26. This gives the plaintext as LEAF.
(b) Let $A=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$ be the unknown key matrix. The plaintext matrix is $X=\left[\begin{array}{cc}1 & 18 \\ 0 & 4\end{array}\right]$ and the ciphertext matrix is $Y=\left[\begin{array}{cc}1 & 14 \\ 0 & 8\end{array}\right]$. Since $A X=Y \operatorname{MOD} 26$, we find that multiplying the matrices gives us the matrix equation

$$
\left[\begin{array}{cc}
a & 18 a+4 b \\
c & 18 c+4 d
\end{array}\right]=\left[\begin{array}{cc}
1 & 14 \\
0 & 8
\end{array}\right] \operatorname{MOD} 26 .
$$

This gives the system of equations

$$
\begin{aligned}
& a=1 \text { MOD } 26 \\
& 18 a+4 b=14 \text { MOD } 26 \\
& c=0 \text { MOD } 26 \\
& 18 c+4 d=8 \text { MOD } 26
\end{aligned}
$$

Substituting the first equation into the second equation gives $18+4 b=14 \mathrm{MOD} 26$ and so $b=-1=25 \mathrm{MOD} 26$. Substituting the third equation into the fourth equation gives $4 d=8 \mathrm{MOD} 26$ and so $d=2 \mathrm{MOD} 26$. In summary, the key matrix is

$$
A=\left[\begin{array}{cc}
1 & 25 \\
0 & 2
\end{array}\right]
$$

5. (a) The distance between the string LBYYS is $185=37 \times 5$ and the distance between the string RZO is $160=2^{5} \times 5$. The distance between the string WQU is $190=2 \times 19 \times 5$, and the distance between the string YYF is $130=13 \times 2 \times 5$. There are also several instances of the string YYS and even YY. The only common factor to all of these distances is 5 , and so we conclude from Kasiski's test that the estimated keyword length is 5 .
(b) The required probability is

$$
\begin{array}{r}
C(6,4)+C(18,4)+C(10,4)+C(5,4)+C(4,4)+C(21,4)+C(17,4)+C(14,4)+C(8,4) \\
C(288,4) \\
+\frac{C(12,4)+C(6,4)+C(6,4)+C(5,4)+0+C(10,4)+C(4,4)+C(6,4)+C(15,4)}{C(288,4)} \\
+\frac{C(21,4)+C(10,4)+C(14,4)+C(17,4)+C(21,4)+0+C(18,4)+C(14,4)}{C(288,4)}
\end{array}
$$

Note that since there are only 3 N's and 3 X's in the ciphertest, it is impossible to select 4 of them.
(c) The required probability is

$$
\frac{C(6,2) \cdot C(18,2)}{C(288,4)}+\frac{C(12,3) \cdot C(6,1)}{C(288,4)} .
$$

6. Using the initial values and the feedback equation, we can fill in the feedback chart

	b_{5}	b_{4}	b_{3}	b_{2}	b_{1}
$t=0$	1	0	0	1	0
$t=1$	1	1	0	0	1
$t=2$	1	1	1	0	0
$t=3$	1	1	1	1	0
$t=4$		1	1	1	1
$t=5$			1	1	1
$t=6$				1	1
$t=7$					1

Note that only the first three values of b_{5} are needed in order to determine the first 8 values of b_{1}. Thus, the keyword is 01001111 and so the Vigenère encipherment is

key	0	1	0	0	1	1	1	1
plain	1	1	1	0	1	1	0	1
cipher	1	0	1	0	0	0	1	0

