Mathematics 124 Winter 2009 Midterm - Solutions

1. The correct answers are:

Caesar Cipher monoalphabetic substitution (MA)
Spartan Scytale transposition (T)
Jefferson's Cipher Wheel
polyalphabetic substitution (PA)
2. A one-time pad is an encryption algorithm where the plaintext is combined with a random key or "pad" to produce the ciphertext. The random key is used exactly once. Early implementations of the one-time pad required that both Alice and Bob exchange actual pads containing the keys. If the key is truly random, the same length as the plaintext, never reused, and kept secret, then the one-time pad provides perfect secrecy.
3. (Not drawn to scale)

4. Alberti's cipher wheel is the earliest known cryptographic system to use a polyalphabetic substitution.
5. If $(6 x+2) \equiv(2 x+3)(\bmod 9)$, then subtracting $2 x+2$ from both sides of the congruence gives $4 x \equiv 1(\bmod 9)$. Noticing that -2 is a solution to the congruence, we conclude that $x \equiv-2(\bmod 9)$ and so $x=7$ is the smallest positive solution.
6. Since $13=1 \times 11+2$ we conclude 8 DIV $17=1$. Since $-13=-2 \times 11+9$ we conclude that -13 DIV $11=-2$.
7. We find BEET $=1 \times 26^{3}+4 \times 26^{2}+4 \times 26+19=20403$.
8. We find $11010+1001=100011$ and $11010-1001=10001$.
9. Remembering to read the row first then the column from the grid, we conclude that math is FUN encodes as

```
VV AG XV XF FD XA AA DX XD.
```

We now write this across the rows corresponding to TAG as follows:

3	1	2
T	A	G
V	V	A
G	X	V
X	F	F
D	X	A
A	A	D
X	X	D

Finally we read down the columns in the order specified by TAG to conclude

VX FX AX AV FA DD VG XD AX.

10. (Solution 1) The matrix corresponding to the ciphertext OMNIVAJI is

$$
Y=\left[\begin{array}{cccc}
14 & 13 & 21 & 9 \\
12 & 8 & 0 & 8
\end{array}\right]
$$

while the matrix corresponding to the plaintext THE RAVEN is

$$
X=\left[\begin{array}{cccc}
19 & 4 & 0 & 4 \\
7 & 17 & 21 & 13
\end{array}\right]
$$

If we write the key matrix as

$$
A=\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right],
$$

then we must have $Y=A X$ MOD 26. Using the first two columns of Y and X implies

$$
A\left[\begin{array}{cc}
19 & 4 \\
7 & 17
\end{array}\right]=\left[\begin{array}{cc}
14 & 13 \\
12 & 8
\end{array}\right] \operatorname{MOD} 26
$$

and so

$$
A=\left[\begin{array}{cc}
14 & 13 \\
12 & 8
\end{array}\right]\left[\begin{array}{cc}
19 & 4 \\
7 & 17
\end{array}\right]^{-1} \operatorname{MOD} 26
$$

In order to calculate this inverse, we note that

$$
\operatorname{det}\left[\begin{array}{cc}
19 & 4 \\
7 & 17
\end{array}\right]=19 \cdot 17-4 \cdot 7=295=9 \mathrm{MOD} 26
$$

Since $9(3)-1=26$, or equivalently $9(3) \equiv 1(\bmod 26)$, we conclude

$$
9^{-1}=3 \mathrm{MOD} 26
$$

so that

$$
\left[\begin{array}{cc}
19 & 4 \\
7 & 17
\end{array}\right]^{-1}=3\left[\begin{array}{cc}
17 & -4 \\
-7 & 19
\end{array}\right]=\left[\begin{array}{cc}
51 & -12 \\
-21 & 57
\end{array}\right]=\left[\begin{array}{cc}
25 & 14 \\
5 & 5
\end{array}\right] \operatorname{MOD} 26
$$

Finally, we find

$$
A=\left[\begin{array}{cc}
14 & 13 \\
12 & 8
\end{array}\right]\left[\begin{array}{cc}
25 & 14 \\
5 & 5
\end{array}\right]=\left[\begin{array}{ll}
415 & 261 \\
340 & 208
\end{array}\right]=\left[\begin{array}{cc}
25 & 1 \\
2 & 0
\end{array}\right] \operatorname{MOD} 26 .
$$

In conclusion, the key matrix is

$$
A=\left[\begin{array}{cc}
25 & 1 \\
2 & 0
\end{array}\right]
$$

(Solution 2) The matrix corresponding to the ciphertext OMNIVAJI is

$$
Y=\left[\begin{array}{cccc}
14 & 13 & 21 & 9 \\
12 & 8 & 0 & 8
\end{array}\right]
$$

while the matrix corresponding to the plaintext THE RAVEN is

$$
X=\left[\begin{array}{cccc}
19 & 4 & 0 & 4 \\
7 & 17 & 21 & 13
\end{array}\right]
$$

If we write the key matrix as

$$
A=\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]
$$

then we must have $Y=A X$ MOD 26. Using the first columns of Y and X implies

$$
A\left[\begin{array}{c}
19 \\
7
\end{array}\right]=\left[\begin{array}{l}
14 \\
12
\end{array}\right] \operatorname{MOD} 26
$$

and so

$$
19 a+7 b=14 \mathrm{MOD} 26 \text { and } 19 c+7 d=12 \mathrm{MOD} 26
$$

Using the third columns of Y and X implies

$$
A\left[\begin{array}{c}
0 \\
21
\end{array}\right]=\left[\begin{array}{c}
21 \\
0
\end{array}\right] \operatorname{MOD} 26
$$

and so

$$
21 b=21 \mathrm{MOD} 26 \text { and } 21 d=0 \mathrm{MOD} 26 .
$$

Thus we conclude that $b=1$ and $d=0$. We now find that $19 a+7=14$ MOD 26 implies

$$
19 a \equiv 7(\bmod 26)
$$

Noticing that if $a=-1$, then $19 a-7=-26$ so that

$$
a \equiv-1 \equiv 25(\bmod 26)
$$

Finally, $19 c=12$ MOD 26 can be solved by noticing that if $c=2$, then $19 c-12=26$. In conclusion, the key matrix is

$$
A=\left[\begin{array}{cc}
25 & 1 \\
2 & 0
\end{array}\right]
$$

11. If x denotes the plaintext numerical equivalent, and $y=E(x)$ denotes the ciphertext numerical equivalent, then in order to determine the plaintext message, we must compute $E^{-1}(y)$. If $y \equiv(7 x+2)(\bmod 26)$, then $7 x \equiv(y-2)(\bmod 26)$. Noticing that $7 \times 15=105=4 \times 26+1$, we conclude 7^{-1} MOD $26=15$. This gives $x \equiv 15(y-2)(\bmod 26)$ and so $E^{-1}(y)=15(y-2)$ MOD 26. Therefore,

$$
\begin{array}{c|ccccccccc}
\text { cipher } & \text { C } & \text { B } & \mathrm{J} & \mathrm{C} & \mathrm{~F} & \mathrm{R} & \mathrm{~W} & \mathrm{Y} & \mathrm{Y} \\
y & 2 & 1 & 9 & 2 & 5 & 17 & 22 & 24 & 24 \\
15(y-2) & 0 & -15 & 105 & 0 & 45 & 225 & 300 & 330 & 330 \\
15(y-2) \text { MOD } 26 & 0 & 11 & 1 & 0 & 19 & 17 & 14 & 18 & 18 \\
\text { plain } & \mathrm{A} & \mathrm{~L} & \mathrm{~B} & \mathrm{~A} & \mathrm{~T} & \mathrm{R} & \mathrm{O} & \mathrm{~S} & \mathrm{~S}
\end{array}
$$

and so the plaintext is ALBATROSS.
12. There are 81 letters in the ciphertext, and so when the ciphertext is written in $k=9$ columns (with each column having 9 letters) the plaintext can be read:

```
TWO ROADS DIVERGED IN A WOOD AND I
TOOK THE ONE LESS TRAVELED BY
AND THAT HAS MADE ALL THE DIFFERENCE
```

This excerpt is from the poem The Road Not Taken by Robert Frost.
Actually, I modified the excerpt slightly in order to make it exactly 81 letters. Frost repeats the word I at the start of the second line.

Two roads diverged in a wood, and II took the one less traveled by, and that has made all the difference.

