Math 135 Prelim \#2 - July 24, 2006

This exam has 6 problems and 7 numbered pages.

Name: \qquad Instructor: Michael Kozdron

You have 75 minutes to complete this exam. Show all work neatly and in order, and clearly indicate your final answers. Answers must be justified whenever possible in order to earn full credit.

Unless otherwise specified, no credit will be given for unsupported answers, even if your final answer is correct. Points will be deducted for incoherent, incorrect, and/or irrelevant statements. A formula page will be provided, and calculators are permitted, but no other aids are allowed.

You are allowed to use standard notation. However, any new notation or abbreviations that you introduce must be clearly defined.

This examination consists of $\mathbf{6}$ problems and is worth 100 total points. You must answer all of the questions in the space provided.

Good luck!

Problem	Score
1	
2	
3	
4	
5	
6	

TOTAL: \qquad

Formula Page

The numerical equivalents of the letters are as follows:

	A	B	C	D	E	F	G	H	I	J	K	L	M	N	0	P	Q	R	S	T	U	V	W	X	Y	Z
A	A	B	C	D	E	F	G	H	I	J	K	L	M	N	0	P	Q	R	S	T	U	V	W	X	Y	Z
B	B	C	D	E	F	G	H	I	J	K	L	M	N	0	P	Q	R	S	T	U	V	W	X	Y	Z	A
C	C	D	E	F	G	H	I	J	K	L	M	N	0	P	Q	R	S	T	U	V	W	X	Y	Z	A	B
D	D	E	F	G	H	I	J	K	L	M	N	0	P	Q	R	S	T	U	V	W	X	Y	Z	A	B	C
E	E	F	G	H	I	J	K	L	M	N	0	P	Q	R	S	T	U	V	W	X	Y	Z	A	B	C	D
F	F	G	H	I	J	K	L	M	N	0	P	Q	R	S	T	U	V	W	X	Y	Z	A	B	C	D	E
G	G	H	I	J	K	L	M	N	0	P	Q	R	S	T	U	V	W	X	Y	Z	A	B	C	D	E	F
H	H	I	J	K	L	M	N	0	P	Q	R	S	T	U	V	W	X	Y	Z	A	B	C	D	E	F	G
I	I	J	K	L	M	N	0	P	Q	R	S	T	U	V	W	X	Y	Z	A	B	C	D	E	F	G	H
J	J	K	L	M	N	0	P	Q	R	S	T	U	V	W	X	Y	Z	A	B	C	D	E	F	G	H	I
K	K	L	M	N	0	P	Q	R	S	T	U	V	W	X	Y	Z	A	B	C	D	E	F	G	H	I	J
L	L	M	N	0	P	Q	R	S	T	U	V	W	X	Y	Z	A	B	C	D	E	F	G	H	I	J	K
M	M	N	0	P	Q	R	S	T	U	V	W	X	Y	Z	A	B	C	D	E	F	G	H	I	J	K	L
N	N	0	P	Q	R	S	T	U	V	W	X	Y	Z	A	B	C	D	E	F	G	H	I	J	K	L	M
0	0	P	Q	R	S	T	U	V	W	X	Y	Z	A	B	C	D	E	F	G	H	I	J	K	L	M	N
P	P	Q	R	S	T	U	V	W	X	Y	Z	A	B	C	D	E	F	G	H	I	J	K	L	M	N	0
Q	Q	R	S	T	U	V	W	X	Y	Z	A	B	C	D	E	F	G	H	I	J	K	L	M	N	0	P
R	R	S	T	U	V	W	X	Y	Z	A	B	C	D	E	F	G	H	I	J	K	L	M	N	0	P	Q
S	S	T	U	V	W	X	Y	Z	A	B	C	D	E	F	G	H	I	J	K	L	M	N	0	P	Q	R
T	T	U	V	W	X	Y	Z	A	B	C	D	E	F	G	H	I	J	K	L	M	N	0	P	Q	R	S
U	U	V	W	X	Y	Z	A	B	C	D	E	F	G	H	I	J	K	L	M	N	0	P	Q	R	S	T
V	V	W	X	Y	Z	A	B	C	D	E	F	G	H	I	J	K	L	M	N	0	P	Q	R	S	T	U
W	W	X	Y	Z	A	B	C	D	E	F	G	H	I	J	K	L	M	N	0	P	Q	R	S	T	U	V
X	X	Y	Z	A	B	C	D	E	F	G	H	I	J	K	L	M	N	0	P	Q	R	S	T	U	V	W
Y	Y	Z	A	B	C	D	E	F	G	H	I	J	K	L	M	N	0	P	Q	R	S	T	U	V	W	X
Z	Z	A	B	C	D	E	F	G	H	I	J	K	L	M	N	0	P	Q	R	S	T	U	V	W	X	Y

1. (16 points) Suppose that $A=\left[\begin{array}{cc}-2 & 1 \\ -3 & 2\end{array}\right]$ and $B=\left[\begin{array}{cc}-1 & 2 \\ 3 & 3\end{array}\right]$.
(a) Compute $A B$ MOD 26.
(b) Let $C=A B$ MOD 26 be the matrix that you computed in (a). Determine C^{-1} MOD 26.
2. (16 points)
(a) Convert the number with base twenty-six representation ELVES to decimal (base ten).
(b) Convert the number with binary (base two) representation 11011001 to decimal.
(c) Convert the number with decimal representation 123 to octal (base eight).
(d) Let $a=110110$ and $b=10101$ be two binary numbers. Compute the binary numbers $a+b$ and $a-b$.

3. (16 points)

(a) Encipher the message GANDALF THE GREY using the Vigenère method with the keyword BILBO.
(b) Suppose that the Vigenère encipherment produced the ciphertext PKSFIH QDNB when the three-letter key string XV_{-}was used. (The last letter of the key string is not yet known.) Decipher as much of the plaintext as possible, and based on the plaintext you obtain, determine the missing plaintext letters and the third letter of the key string.

4. (16 points)

(a) The ciphertext ELPF resulted from a Hill encipherment with the key matrix $A=\left[\begin{array}{ll}4 & 3 \\ 3 & 1\end{array}\right]$. Decipher the message.
(b) The ciphertext BAOI resulted from a Hill encipherment of the plaintext BASE. Based on this information, determine the key matrix A.
5. (20 points) A message was enciphered using the Vigenère method with a keyword of a certain length. The ciphertext is shown below, and certain repeated letter groups are underlined.

$$
\begin{aligned}
& \text { YYFHS WZBJG KFFWV JVZYS SBWQU XLBGS WKVHG PPGHJ } \\
& \text { JETRF YYSGK FITOC WUGLB YYSLF MRZOG TWGWC SVBLB } \\
& \text { JWCUA TIHDZ RVBGC TDSGH TUWHC SVTRF YYSGO WBZRF } \\
& \text { IFBKW XUOUY YYFRB JZBWV JCOQR TWARF IFFZV JISWV } \\
& \text { JJVDR TNGOW JFBHF NEUWC WLZHH MVADZ QFBHF NEUWC } \\
& \text { KZBGH MVARB JIWQU YFPUW SXHKS RRZOO SUWQH MVRDF } \\
& \text { PESVG GZBGH MVALB YYSOO SUCIA TIRRF BYSUS YYSVV } \\
& \text { FUCZG QZS }
\end{aligned}
$$

(a) From the spacing between the repeated letter groups, use Kasiski's test to estimate the length of the keyword.

The distribution (i.e., letter counts) of the 288 characters in the ciphertext is as follows.

A	B	C	D	E	F	G	H	I	J	K	L	M
6	18	10	5	4	21	17	14	8	12	6	6	5
N	O	P	Q	R	S	T	U	V	W	X	Y	Z
3	10	4	6	15	21	10	14	17	21	3	18	14

(b) Suppose that 4 letters from this ciphertext are picked at random. Write down (but do not evaluate) an expression to represent the probability that these 4 letters are identical.
(c) Suppose that 4 letters from this ciphertext are picked at random. Write down (but do not evaluate) an expression to represent the probability that either "a pair of A's and a pair of B's" is drawn or "three J's and one K " is drawn.
6. (16 points) Consider the 5 -bit linear feedback shift register given by

$$
\begin{aligned}
& b_{1}^{\prime} \leftarrow b_{2} \\
& b_{2}^{\prime} \leftarrow b_{3} \\
& b_{3}^{\prime} \leftarrow b_{4} \\
& b_{4}^{\prime} \leftarrow b_{5} \\
& b_{5}^{\prime} \leftarrow b_{3}+b_{2}+b_{1}
\end{aligned}
$$

with initial values $b_{5}=1, b_{4}=0, b_{3}=0, b_{2}=1, b_{1}=0$. Compute the first 8 values of b_{1}, and use them to do a binary Vigenère encipherment of the plaintext 11101101.
(The End.)

