Mathematics 124 (Winter 2009)
Cryptanalysis of the Hill cipher

Given only the ciphertext, since frequency analysis is not really possible, a brute force attack may work. Assuming that the key matrix A is 2×2 means that the cryptanalyst needs to try out the inverse A^{-1} on the start of the ciphertext to see if sensible plaintext is produced. There are $26^{4}=456976$ possible 2×2 matrices modulo 26 , but obviously not all are invertible. Therefore, assuming that a computer takes one-tenth of a second to multiply a matrix by the first few terms of the ciphertext, it would take about 12 hours to check all possibilities.

Remark. For your information only. A matrix is invertible modulo 26 if and only if it is invertible modulo 2 and it is invertible modulo 13. The Chinese Remainder Theorem can then be used to show that the number of 2×2 matrices that is invertible modulo 26 is

$$
26^{4}\left(1-\frac{1}{2}\right)\left(1-\frac{1}{2^{2}}\right)\left(1-\frac{1}{13}\right)\left(1-\frac{1}{13^{2}}\right)=157248
$$

This means that, once the invertible 2×2 matrices are determined, it would take approximately 4 hours to check all possibilities.

However, if a little bit of the plaintext is known, then it is relatively straightforward to cryptanalyze.

Example. Suppose that a ciphertext begins with WJMQ FMGG which corresponds to STAY HOME. Determine the key matrix.

Solution. Since ST $\mapsto W J$ and AY $\mapsto M Q$, we know that

$$
A\left[\begin{array}{l}
18 \\
19
\end{array}\right] \equiv\left[\begin{array}{c}
22 \\
9
\end{array}\right](\bmod 26) \quad \text { and } \quad A\left[\begin{array}{c}
0 \\
24
\end{array}\right] \equiv\left[\begin{array}{l}
12 \\
16
\end{array}\right](\bmod 26)
$$

But because of the way matrix multiplication is defined, this is equivalent to

$$
A\left[\begin{array}{cc}
18 & 0 \\
19 & 24
\end{array}\right] \equiv\left[\begin{array}{cc}
22 & 12 \\
9 & 16
\end{array}\right](\bmod 26)
$$

Now, to solve for A, all we need to do is multiply both sides by

$$
\left[\begin{array}{cc}
18 & 0 \\
19 & 24
\end{array}\right]^{-1} \quad(\bmod 26)
$$

Unfortunately, this inverse does not exist since its determinant is $432=16 \mathrm{MOD} 26$ which is NOT relatively prime to 26 .

However, we also know that $\mathrm{HO} \mapsto \mathrm{FM}$ which means that

$$
A\left[\begin{array}{c}
7 \\
14
\end{array}\right] \equiv\left[\begin{array}{c}
5 \\
13
\end{array}\right](\bmod 26)
$$

Thus, we have

$$
A\left[\begin{array}{cc}
18 & 7 \\
19 & 14
\end{array}\right] \equiv\left[\begin{array}{cc}
22 & 5 \\
9 & 13
\end{array}\right](\bmod 26)
$$

Since the inverse of

$$
\left[\begin{array}{cc}
18 & 7 \\
19 & 14
\end{array}\right]
$$

is

$$
\left[\begin{array}{cc}
20 & 3 \\
23 & 22
\end{array}\right] \operatorname{MOD} 26
$$

we conclude that

$$
A\left[\begin{array}{cc}
18 & 7 \\
19 & 14
\end{array}\right]\left[\begin{array}{cc}
20 & 3 \\
23 & 22
\end{array}\right] \equiv\left[\begin{array}{cc}
22 & 5 \\
9 & 13
\end{array}\right]\left[\begin{array}{cc}
20 & 3 \\
23 & 22
\end{array}\right](\bmod 26)
$$

and so

$$
A \equiv\left[\begin{array}{cc}
9 & 20 \\
14 & 5
\end{array}\right](\bmod 26)
$$

Remark. There is nothing that requires the key matrix to be 2×2. For instance, a 3×3 key matrix requires that the plaintext be grouped in threes; that is,

$$
X=\left[\begin{array}{cccc}
x_{1} & x_{4} & \cdots & x_{n-2} \\
x_{2} & x_{5} & \cdots & x_{n-1} \\
x_{3} & x_{6} & \cdots & x_{n}
\end{array}\right]
$$

The resulting Hill alphabet has $26^{3}=17576$ letters. A 4×4 key matrix yields an alphabet of $26^{4}=456976$ letters. There are general formulas to compute inverses of matrices, and these can be implemented on a computer. It is important to note that the formula for the inverse is nice only for 2×2 matrices.

