Mathematics 124 (Winter 2009)
Affine Ciphers, Decimation Ciphers, and Modular Arithmetic

Affine Ciphers

An encipherment scheme (or algorithm) of the form

$$
E(x)=(a x+b) \operatorname{MOD} 26
$$

is called an affine cipher. Here x is the numerical equivalent of the given plaintext letter, and a and b are (appropriately chosen) integers.

Recall that the numerical equivalents of the letters are as follows:

A	B	C	D	E	F	G	H	I	J	K	L	M
0	1	2	3	4	5	6	7	8	9	10	11	12
N	0	P	Q	R	S	T	U	V	W	X	Y	Z
13	14	15	16	17	18	19	20	21	22	23	24	25

Example: Encipher ITS COOL with

$$
E(x)=(5 x+8) \mathrm{MOD} 26 .
$$

Solution: Filling in the following table gives

$$
\begin{array}{l|lllllll}
\text { plain } & \text { I } & \text { T } & \text { S } & \text { C } & 0 & 0 & \text { L } \\
\quad x & & & & & & & \\
5 x+8 \\
+8) \text { MOD } 26 & & & & & & & \\
\text { cipher } & & & & & & &
\end{array}
$$

If $y=E(x)=(a x+b)$ MOD 26, then we can "solve for x in terms of y " and so determine $E^{-1}(y)$. That is, if $y \equiv(a x+b)(\bmod 26)$, then $y-b \equiv a x(\bmod 26)$, or equivalently $a x \equiv(y-b)(\bmod 26)$. Using our earlier results, we see that if we multiply both sides by $a^{-1}(\bmod 26)$, then $x \equiv a^{-1}(y-b)(\bmod 26)$ and so our decipherment function is

$$
E^{-1}(y)=a^{-1}(y-b) \operatorname{MOD} 26 .
$$

Example: Decipher HPCCXAQ if the encipherment function is $E(x)=(5 x+8)$ MOD 26.
Solution: We begin by finding the decipherment function. Since $5 x \equiv 1(\bmod 26)$ is solved with $x \equiv 21(\bmod 26)$ we see $5^{-1}(\bmod 26)=21$. Therefore,

$$
E^{-1}(y)=21(y-8) \operatorname{MOD} 26
$$

and so filling in our table gives

$$
\begin{array}{l|lllllll}
\text { cipher } & \text { H } & \text { P } & \text { C } & \text { C } & \text { X } & \text { A } & \text { Q } \\
y & & & & & & & \\
y-8 & & & & & & & \\
21(y-8) & & & & & & & \\
-8) \text { MOD } 26 & & & & & & \\
\text { plain } & & & & & &
\end{array}
$$

Example: Suppose that an affine cipher $E(x)=(a x+b)$ MOD 26 enciphers H as X and Q as Y. Find the cipher (that is, determine a and b).

Solution: We see that $\mathrm{H} \mapsto \mathrm{X}$ means $E(7)=23$ and $\mathrm{Q} \mapsto \mathrm{Y}$ means $E(16)=24$. That is,

$$
a \cdot 7+b \equiv 23(\bmod 26) \text { and } a \cdot 16+b \equiv 24(\bmod 26) .
$$

Subtracting gives $16 a-7 a \equiv 1(\bmod 26)$ so that $9 a \equiv 1(\bmod 26)$. Therefore, $a=9^{-1}(\bmod 26)=3$.
Finally, we substitute $a=3$ into either of the earlier equations and solve for b,

$$
\text { i.e., } 3 \cdot 7+b \equiv 23(\bmod 26) \text { implies } b=2 \text {. }
$$

In summary,

$$
E(x)=(3 x+2) \text { MOD } 26 .
$$

Remark: (The "Mod-mod Connection")
The least non-negative solution of the congruence $x \equiv b(\bmod m)$ is $x=b$ MOD m.

Decimation Ciphers

In the special case where $b=0$, the affine cipher $E(x)=a x$ MOD m is called a decimation cipher. This is discussed in detail on pages 70-73. The key idea in this subsection is that certain choices of a and m do not lead to valid substitutions.

Example: Suppose that $E(x)=4 x$ MOD 26. Determine the ciphertext alphabet.
Solution: We begin with our table of numerical equivalents, and then determine $4 x$ MOD 26 .

plain	A	B	C	D	E	F	G	H	I	J	K	L	M
$\begin{gathered} x \\ 4 x \end{gathered}$	0	1	2	3	4	5	6	7	8	9	10	11	12
$\begin{gathered} 4 x \text { MOD } 26 \\ \text { cipher } \end{gathered}$													
plain	N	0	P	Q	R	S	T	U	V	W	X	Y	Z
x $4 x$	13	14	15	16	17	18	19	20	21	22	23	24	25
$4 x$													
$4 x$ MOD 26													

The problem, of course, is that 4 and 26 are not relatively prime, and so this cyclic phenomenon occurs in the cipher alphabet. Since the numbers $0,2,4,6,8,10,12,13,14,16,18,20,22,24$ are not relatively prime with respect to the 26 , the only possible choices for the decimation cipher $E(x)=a x \operatorname{MOD} 26$ are $a=1,3,5,7,9,11,15,17,19,21,23,25$. Therefore, we conclude that the decimation cipher is weaker than the simple shift cipher. If the cryptanalyst knows that a shift cipher has been used, then there are 25 possible shifts that need to be checked. However, if it is known that a decimation cipher has been used, then there are only 12 possible ciphers that need to be checked.

Summary of Valid Affine Ciphers

The function $E(x)=(a x+b)$ MOD 26 defines a valid affine cipher if a is relatively prime to 26 , and b is an integer between 0 and 25 , inclusive. If $b=0$, then we refer to this cipher as a decimation cipher. (Note that since there are 12 valid choices of a and 26 valid choices of b, there are $12 \times 26=312$ possible valid affine ciphers.)

Also note that if $a=1$, then $E(x)=(x+b)$ MOD 26 is simply a Caesar $(+b)$ shift cipher.

