Mathematics 124 (Winter 2009)
RSA-129

In August 1977, a problem appeared in Martin Gardner's Mathematical Games column in Scientific American. It was posed by Rivest, Shamir, and Adleman, and consisted of the following information.
Alice broadcasts her public exponent e and her modulus m where $e=9007$ and

$$
\begin{aligned}
m= & 1143816257578888676692357799761466120102182967212423625625618429 \\
& 35706935245733897830597123563958705058989075147599290026879543541 .
\end{aligned}
$$

Eve has intercepted the ciphertext

$$
\begin{gathered}
y=968696137546220614771409222543558829057599911245743198746951209308 \\
16298225145708356931476622883989628013391990551829945157815154 .
\end{gathered}
$$

What is the plaintext?
In order to decipher the message, one must factor the 129-digit m into the product of primes. This number became known as RSA-129.
In April 1994, a team consisting of Derek Atkins, Michael Graff, Arjen Lenstra, and Paul Leyland succeeded in factoring RSA-129. They used the double large prime variation of the multiple polynomial quadratic sieve factoring method. The sieving step was carried out in 8 months by about 600 volunteers from more than 20 countries. The end result was

$$
\begin{aligned}
\text { RSA-129 }= & p q \\
= & 3490529510847650949147849619903898133417764638493387843990820577 \\
& \times 32769132993266709549961988190834461413177642967992942539798288533
\end{aligned}
$$

When decrypted with the secret exponent

$$
\begin{aligned}
d= & e^{-1} \operatorname{MOD}(p-1)(q-1) \\
= & 106698614368578024442868771328920154780709906633937862801226224496631 \\
& 063125911774470873340168597462306553968544513277109053606095
\end{aligned}
$$

the plaintext $x=y^{d} \mathrm{MOD} m$ reads

Exercise. Write the plaintext as

$$
\begin{array}{cccccccccccccccccccc}
20 & 08 & 05 & 00 & 13 & 01 & 07 & 09 & 03 & 00 & 23 & 15 & 18 & 04 & 19 & 00 & 01 & 18 & 05 & 00 \\
19 & 17 & 21 & 05 & 01 & 13 & 09 & 19 & 08 & 00 & 15 & 19 & 19 & 09 & 06 & 18 & 01 & 07 & 05
\end{array}
$$

Using the following numerical equivalents of the letters

A	B	C	D	E	F	G	H	I	J	K	L	M
01	02	03	04	05	06	07	08	09	10	11	12	13
N	O	P	Q	R	S	T	U	V	W	X	Y	Z
14	15	16	17	18	19	20	21	22	23	24	25	26

with 00 corresponding to a space, decode the message.
Remark. It seems that Martin Gardner's article can be read at
http://www.fortunecity.com/emachines/e11/86/cipher1.html

