Math 026L. 04 Spring 2002
Test \#4 Solutions
1.
(a) The possible values for X are: 0,1 , or 2 .
(b) With probability $2 / 6$, the player rolls 1 or 6 . If that happens then with probability $1 / 4$, the player gets 0 heads (TT), with probability $1 / 4$ the player gets 2 heads (HH), and with probability $2 / 4$ the player gets 1 head (TH or HT).

On the other hand, with probability $4 / 6$, the player rolls $2,3,4$ or 5 . If that happens then with probability $1 / 2$, the player gets 0 heads (T), and with probability $1 / 2$ the player gets 1 head (H).

Now, we take into account whether one coin was flipped or two. The only way to win $\$ 2$ is to roll 1 or 6 , and then flip two heads. Thus, $\mathbb{P}(X=2)=\frac{2}{6} \cdot \frac{1}{4}=\frac{1}{12}$.

However, it is possible to win $\$ 0$ or $\$ 1$, by flipping either one coin or two. Thus,

$$
\mathbb{P}(X=0)=\frac{2}{6} \cdot \frac{1}{4}+\frac{4}{6} \cdot \frac{1}{2} \text { and } \mathbb{P}(X=1)=\frac{2}{6} \cdot \frac{2}{4}+\frac{4}{6} \cdot \frac{1}{2} .
$$

Therfore the probability mass density (displayed in a table) is

$X=k$	0	1	2
$\mathbb{P}(X=k)$	$\frac{5}{12}$	$\frac{6}{12}$	$\frac{1}{12}$

(c) $\mathbb{E}(X)=0 \cdot \mathbb{P}(X=0)+1 \cdot \mathbb{P}(X=1)+2 \cdot \mathbb{P}(X=2)=0 \cdot \frac{5}{12}+1 \cdot \frac{6}{12}+2 \cdot \frac{1}{12}=\frac{8}{12} \approx 0.67$
2.
(a) - On the interval $[0,2], p(t)$ is clearly non-negative. In fact, t^{2} is non-negative for all values of t.

- $\int_{0}^{2} \frac{3}{8} t^{2} d t=\left.\frac{1}{8} t^{3}\right|_{0} ^{2}=\frac{1}{8} \cdot 8-0=1$
(b) $P(t)=\int_{0}^{t} p(x) d x=\frac{1}{8} t^{3}$
(c) $\int_{0}^{a} p(t) d t=\frac{1}{8} a^{3}$. Thus, $\frac{1}{8} a^{3}=\frac{1}{2}$ gives $a=\sqrt[3]{4} \approx 1.587$
(d) $\int_{0}^{2} t p(t) d t=\int_{0}^{2} \frac{3}{8} t^{3} d t=\left.\frac{3}{32} t^{4}\right|_{0} ^{2}=\frac{3}{2}$

3. We begin by computing $\int t p(t) d t$.

$$
\int t p(t) d t=\int \frac{2}{\pi} \frac{t}{1+t^{2}} d t=\int \frac{1}{\pi} \frac{1}{u} d u=\frac{1}{\pi} \ln u+C=\frac{1}{\pi} \ln \left(1+t^{2}\right)+C
$$

after substituting $u=1+t^{2}, d u=2 d t$.
Thus,

$$
\int_{0}^{\infty} \frac{2}{\pi} \frac{t}{1+t^{2}} d t=\lim _{b \rightarrow \infty} \int_{0}^{b} \frac{2}{\pi} \frac{t}{1+t^{2}} d t=\left.\lim _{b \rightarrow \infty} \frac{1}{\pi} \ln \left(1+t^{2}\right)\right|_{0} ^{b}=\lim _{b \rightarrow \infty} \frac{1}{\pi} \ln \left(1+b^{2}\right)=\infty
$$

In other words, the mean $\int_{0}^{\infty} t p(t) d t$ is infinite.
4.
(a) By the FTC, $p(t)=P^{\prime}(t)$. Thus,

$$
p(t)=\frac{d}{d t} \frac{2}{\pi} \arcsin (\sqrt{t})=\frac{1}{\pi} \frac{1}{\sqrt{1-t}} \frac{1}{\sqrt{t}} .
$$

(b) DRAW A PICTURE TO HELP UNDERSTAND THIS SOLUTION. The fraction of students that received a score less that 0.60 is equal to the area under the density curve from $t=0$ to $t=0.60$.

But we remember that the distribution function $P(t)$ is defined as the area under the density curve from 0 to t. Thus since we want the area from 0 to 0.60 , we simply compute $P(0.60)$.

Therefore, $P(0.60)=\frac{2}{\pi} \arcsin (\sqrt{0.60}) \approx 0.564$. In other words, 56.4% of students received a score less than 0.60.

