Math 026L. 04 Spring 2002
Test \#1 Solutions
1.
(a) $\frac{\pi}{3}$
(b) $-\frac{\sqrt{3}}{2}$
(c) $\frac{1}{\sqrt{1+x^{2}}}$
2. Let $\theta=\tan ^{-1} x$. Then $\tan \theta=x$. Differentiating both sides with respect to x gives $\frac{d}{d x} \tan \theta=\frac{d}{d x} x$, or

$$
\frac{1}{\cos ^{2} \theta} \frac{d \theta}{d x}=1
$$

Hence,

$$
\frac{d \theta}{d x}=\cos ^{2} \theta=\cos ^{2}\left(\tan ^{-1} x\right)=\left(\frac{1}{\sqrt{1+x^{2}}}\right)^{2}=\frac{1}{1+x^{2}}
$$

by Problem 1 (c).

3.

(a) $y^{\prime}=\frac{\sin x}{\cos ^{2} x}$
(b) $y^{\prime}=2 \cos (\cos x) \cdot \sin (\cos x) \cdot \sin x$
(c) $y^{\prime}=\frac{-1}{\sqrt{1-\left(\sin ^{-1} x\right)^{2}}} \cdot \frac{1}{\sqrt{1-x^{2}}}$
4. $x=718.89$ and $y=541.72$
5.
(a) On the given domain, $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$, your sine curve should complete exactly one period.
(b) Range $(y)=[1,7]$
(c) y is not invertible since it fails the Horizontal Line Test. For example, $y(-\pi / 2)=y(0)=$ $y(\pi / 2)=4$.
(d) N / A
(e) $\left[-\frac{\pi}{4}, \frac{\pi}{4}\right]$
6.
(a) $v(t)=-A \omega \sin (\omega t+k)$
(b) $a(t)=-A \omega^{2} \cos (\omega t+k)$
(c) Since $s^{\prime \prime}(t)=-A \omega^{2} \cos (\omega t+k)$, and $-\omega^{2} s(t)=-\omega^{2} \cdot A \cos (\omega t+k)$, and these two are equal, $s(t)$ is a solution to the differential equation $s^{\prime \prime}(t)=-\omega^{2} s(t)$.
(d) In this case, $v(t)=-\sin \left(\frac{1}{2} t+\pi\right)$ so that $v(t)=0$ when $\sin \left(\frac{1}{2} t+\pi\right)=0$.

But $\sin x=0$ whenever x is a multiple of π. Thus we need $\frac{1}{2} t+\pi$ to be a multiple of π.

This happens only when $t=0, \pm 2 \pi, \pm 4 \pi, \pm 6 \pi, \ldots$.

So, in particular, three exact values of t are $t=0, \pi,-\pi$.
7.
(a) To solve this problem start by plotting the 5 given points. You will notice that the three points $(0,20),(6,35)$, and $(12,50)$ all line in a perfectly straight line.

This gives the linear component of the stock's price. The slope of the line through these points is $m=\frac{50-20}{12-0}=\frac{5}{2}$ and since the line passes through $(0,20)$, the y-intercept is $b=20$.

Now, the tricky part.

If we look at $f(t)$ - the linear part, we are left with only the cyclical part. That is,

$$
\begin{aligned}
& f(t)-m t-b=A \sin \frac{\pi t}{6}, \text { or } \\
& f(t)-\frac{5}{2} t-20=A \sin \frac{\pi t}{6}
\end{aligned}
$$

Plotting each of the 5 points with the linear part subtracted, gives us a curve which goes through the 5 points $(0,0),(3,10),(6,0),(9,-10)$, and $(12,0)$.

Thus these points fall exactly on the sine curve with amplitude $A=10$.

$$
\therefore f(t)=\frac{5}{2} t+20+10 \sin \frac{\pi t}{6}
$$

(b) Notice that the five original data points lie exactly on the curve $f(t)$.
(c) Looking at the graph of $f(t)$ it appears that the stock is actually losing value between May and September.

