Math 26L. 04 Spring 2002
Extra Probability Problem

1. Consider the following game. A player flips a fair coin. If the coins shows heads, then the player rolls two dice and wins $\$ X$, where X is the sum of the upmost faces on the two dice. However, if the coin shows tails, then the player rolls only one die and instead wins $\$ X$, where X is the upmost face on this single die.
(a) What are all possible values for X, the player's winnings?

The possible values for X are: $1,2,3,4,5,6,7,8,9,10,11$, or 12 .
(b) Compute the probability mass density of X. Display your answer in a table.

DRAW A TREE DIAGRAM TO HELP YOU KEEP TRACK WHILE READING THIS

 SOLUTION.With probability $1 / 2$, the player flips a tails. If that happens then with probability $1 / 6$, the player wins either $1,2,3,4,5$, or 6 .

With probability $1 / 2$, the player flips a heads. If that happens then the player wins 2,3 , $4,5,6,7,8,9,10,11$, or 12 , with probabilities

Sum	2	3	4	5	6	7	8	9	10	11	12
Probability	$\frac{1}{36}$	$\frac{2}{36}$	$\frac{3}{36}$	$\frac{4}{36}$	$\frac{5}{36}$	$\frac{6}{36}$	$\frac{5}{36}$	$\frac{4}{36}$	$\frac{3}{36}$	$\frac{2}{36}$	$\frac{1}{36}$

Now, we take into account whether one die or two was rolled. The only way to win $\$ 1$ is to flip a tails, and then roll a 1 . Thus, $\mathbb{P}(X=1)=\frac{1}{12}=\frac{6}{72}$.

The only way to win $\$ 7,8,9,10,11$, or 12 is to flip a heads, and then roll that sum. Thus, $\mathbb{P}(X=7)=\frac{6}{72}, \mathbb{P}(X=8)=\frac{5}{72}, \mathbb{P}(X=9)=\frac{4}{72}, \mathbb{P}(X=10)=\frac{3}{72}, \mathbb{P}(X=11)=\frac{2}{72}$, $\mathbb{P}(X=12)=\frac{1}{72}$.

However, it is possible to win $\$ 2,3,4,5$, or 6 , by rolling either one die or two. Thus, $\mathbb{P}(X=2)=\frac{1}{12}+\frac{1}{72}, \mathbb{P}(X=3)=\frac{1}{12}+\frac{2}{72}, \mathbb{P}(X=4)=\frac{1}{12}+\frac{3}{72}, \mathbb{P}(X=5)=\frac{1}{12}+\frac{4}{72}$, $\mathbb{P}(X=6)=\frac{1}{12}+\frac{5}{72}$.
In summary,

$X=k$	1	2	3	4	5	6	7	8	9	10	11	12
$\mathbb{P}(X=k)$	$\frac{6}{72}$	$\frac{7}{72}$	$\frac{8}{72}$	$\frac{9}{72}$	$\frac{10}{72}$	$\frac{11}{72}$	$\frac{6}{72}$	$\frac{5}{72}$	$\frac{4}{72}$	$\frac{3}{72}$	$\frac{2}{72}$	$\frac{1}{72}$

(c) Determine what a fair price to pay to play is by computing $\mathbb{E}(X)$.

$$
\begin{aligned}
\mathbb{E}(X) & =1 \mathbb{P}(X=1)+2 \mathbb{P}(X=2)+\cdots+11 \mathbb{P}(X=11)+12 \mathbb{P}(X=12) \\
& =\sum_{k=1}^{12} k \cdot \mathbb{P}(X=k) \\
& =\frac{6+14+24+36+50+66+42+40+36+30+22+12}{72} \\
& =5.25
\end{aligned}
$$

