Math 026L. 04 Spring 2002
January 16, 2002

Example: A group of sailors are shipwrecked on an island and a helicopter is coming to rescue them.

The helicopter has a hanging 20 ft . ladder and is hovering at a constant 20 ft . above the sea. It is approaching the shipwrecked sailors at $10 \mathrm{ft} . / \mathrm{sec}$.

How fast is the angle of elevation from the sailors to the helicopter changing when the ladder is 200 ft . away?

Solution: Let θ be the angle of elevation and let x be the distance from the end of the ladder to the sailors.

IMPORTANT: SINCE BOTH THE ANGLE θ AND THE DISTANCE x ARE CHANGING AS THE HELICOPTER GETS CLOSER, THEY ARE BOTH DEPENDENT ON TIME.

That is, θ is really a function of t, and x is also a function of t. In other words, $\theta=\theta(t)$ and $x=x(t)$.

From the diagram, we see that x and θ are related by tangent.

$$
\therefore \tan (\theta)=\frac{20}{x}
$$

Taking derivatives with respect to t we get

$$
\frac{d}{d t} \tan (\theta)=\frac{d}{d t} \frac{20}{x}
$$

By the chain rule this gives,

$$
\frac{1}{\cos ^{2}(\theta)} \cdot \frac{d \theta}{d t}=\frac{-20}{x^{2}} \cdot \frac{d x}{d t}
$$

Since the helicopter is approaching the sailors at $10 \mathrm{ft} . / \mathrm{sec}$., $\frac{d x}{d t}=-10$.
We are interested in $\frac{d \theta}{d t}$ when $x=200$, so we find that when $x=200, \cos (\theta)=\frac{200}{\sqrt{40400}} \approx .5445$.
Solving for $\frac{d \theta}{d t}$ gives

$$
\frac{d \theta}{d t}=\cos ^{2}(\theta) \cdot \frac{-20}{x^{2}} \cdot \frac{d x}{d t}=\left(\frac{200}{\sqrt{40400}}\right)^{2} \cdot \frac{-20}{200^{2}} \cdot-10=0.00495
$$

Thus when the helicopter is 200 ft . from the sailors, the angle of elevation is changing at 0.00495 radians/sec.

