Math 103.01 Summer 2001
 Test \#2

Name: \qquad

Read all of the following information before starting the test:

- Be sure that this test has $\mathbf{1 0}$ pages including this cover.
- There are $\mathbf{8}$ problems on this test worth a total of $\mathbf{1 0 0}$ points.
- The last page is for your scrap work and may be detached from the test booklet.
- Calculators are permitted, but no other aids are allowed.
- Show all work neatly and in order, and clearly indicate your final answers.
- Answers must be justified whenever possible in order to earn full credit. No credit will be given for unsupported answers, even if your final answer is correct.
- Please keep your written answers succinct. Points will be deducted for incoherent, incorrect and/or irrelevant statements.
- Good luck!

Problem	1	2	3	4	5	6	7	8	Total
Score									

1. (15 points) Find all critical points of the function $f(x, y)=e^{-y}\left(x^{2}-y^{2}\right)$ and classify each critical point as either a local maximum, a local minimum, or a saddle point.
2. (15 points) Find the absolute maximum value and the absolute minimum value of $f(x, y)=x y$ subject to the constraint $8 x^{2}+y^{2} \leq 48$.
3. (12 points) Evaluate

$$
\int_{0}^{1} \int_{y^{2}}^{1} y \sin \left(x^{2}\right) d x d y .
$$

4. (12 points) Let R be that part of the annulus which lies in the fourth quadrant formed by removing a semicircular disk of radius 2 from a semicircular disk of radius 4. Compute

$$
\iint_{R} \frac{x}{\sqrt{x^{2}+y^{2}}} d A
$$

5. (12 points) Compute

$$
\iiint_{T} 1-y^{2} d V
$$

where T is the tetrahedron with vertices $(0,0,0),(1,0,0),(0,2,0),(0,0,3)$.
6. (12 points) Suppose that T is the region in the first octant which lies between the spheres $x^{2}+y^{2}+z^{2}=2$ and $x^{2}+y^{2}+z^{2}=4$. That is, T is defined by the inequalities $x \geq 0, y \geq 0$, $z \geq 0$, and $2 \leq x^{2}+y^{2}+z^{2} \leq 4$. Evaluate

$$
\iiint_{T} \frac{z}{x^{2}+y^{2}} d V
$$

7. (12 points) Let T be the solid which lies within the cylinder $x^{2}+y^{2}=4$, above the plane $z=-1$, and below the sphere $x^{2}+y^{2}+(z-1)^{2}=4$. Compute

$$
\iiint_{T} z d V
$$

8. (10 points) As you may know, the area of the unit disk $x^{2}+y^{2}=1$ in \mathbb{R}^{2} is π and the volume of the unit sphere $x^{2}+y^{2}+z^{2}=1$ in \mathbb{R}^{3} is $\frac{4}{3} \pi$.

There is a natural generalization to 4 dimensions. The surface $x^{2}+y^{2}+z^{2}+w^{2}=1$ is the called the unit hypersphere in \mathbb{R}^{4}.

Write down, but do not evaluate, a quadruple integral to express the hypervolume of the unit hypersphere in \mathbb{R}^{4}.

This quadruple integral may be computed by a generalization of spherical coordinates to four dimensions. In fact, the hypervolume of the unit hypersphere in \mathbb{R}^{4} is $\frac{\pi^{2}}{2}$.

Scrap Page

(You may carefully remove this page from the test booklet.)

