1. (20 points) Let C be the parametrized path in \mathbb{R}^{3} traced out by the position vector

$$
\mathbf{r}(t)=\sin ^{3} t \mathbf{i}+\cos ^{3} t \mathbf{j}
$$

for $0 \leq t \leq \pi / 2$.
(a) Compute the arclength of C.
(b) Find the unit tangent and the unit normal to C for each t such that $0 \leq t \leq \pi / 2$.
(c) Determine the equation the plane containing both the unit tangent and unit binormal vectors at $t=\pi / 4$.
2. (14 points) Consider the function $f(x, y)=x^{4}+y^{4}-4 x y$.
(a) Find the equation of the plane tangent to the graph $z=f(x, y)$ at the point $(2,2,16)$.
(b) Find all points at which the tangent plane to the graph $z=f(x, y)$ is horizontal.
3. (14 points) Find an equation of the plane that passes through the point $(-1,2,1)$ and contains the line of intersection of the planes $x+y-z=2$ and $2 x-y+3 z=1$.
4. (10 points) Give a geometric description of the family of planes $x+y+z=k$ where k is a real constant.
5. (20 points) Consider the following limits. For each, either show that the limit does not exist or determine its value if it does.
(a) $\quad \lim _{(x, y) \rightarrow(0,0)} \frac{x^{2}}{x^{2}+y^{2}}$
(b) $\quad \lim _{(x, y) \rightarrow(0,0)} \frac{x y}{\sqrt{x^{2}+y^{2}}}$
6. (10 points) Suppose that $f(x, y)=x^{3}+\alpha x y^{2}$. Find the value of α so that $\frac{\partial^{2} f}{\partial x^{2}}+\frac{\partial^{2} f}{\partial y^{2}}=0$.
7. (12 points) If $z=f(x-y)$, show that $\frac{\partial z}{\partial x}+\frac{\partial z}{\partial y}=0$.

