I have neither given nor received aid in the completion of this test. Signature:

To get full credit you must show enough work to convince me that you know what you are doing!

1. 10 pts. Let $\mathbf{F}=x^{2} \mathbf{i}+x y \mathbf{j}+x z \mathbf{k}$. Compute the divergence and curl of \mathbf{F}.

Solution.

$$
\begin{aligned}
\nabla \bullet \mathbf{F} & =\frac{\partial}{\partial x} x^{2}+\frac{\partial}{\partial y} x y+\frac{\partial}{\partial z} x z=4 x \\
\nabla \times \mathbf{F} & =\left[\begin{array}{ccc}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
\frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\
x^{2} & x y & x z
\end{array}\right]=-z \mathbf{j}+y \mathbf{k} .
\end{aligned}
$$

2. 10 pts. Let $\mathbf{F}=y \mathbf{i}+(x+2 y) \mathbf{j}$. Exhibit a function f such that $\mathbf{F}=\nabla f$.

Solution. Fix $(a, b) \in \mathbf{R}^{2}$. Let C be the curve $x=a t, y=b t, 0 \leq t \leq 1$. The function f with gradient \mathbf{F} whose value at $(0,0)$ is zero is then given by

$$
f(a, b)=\int_{C} y d x+(x+2 y) d y=\int_{0}^{1}(b t) d(a t)+(a t+2 b t) d(b t)=a b+b^{2}
$$

3. 20 pts. Let $\mathbf{F}=y \mathbf{i}$ and let C be the boundary of the square with vertices $(0,0),(0,1),(1,1)$ and $(1,0)$ traversed counterclockwise. Evaluate

$$
\int_{C} \mathbf{F} \bullet \mathbf{T} d s
$$

from the definition of a line integral and then use Green's Theorem to evaluate it.
Solution. Using the definition, we first write

$$
\int_{C} \mathbf{F} \bullet \mathbf{T} d s=\int_{C} y d x
$$

On the two vertical edges $d x$ is zero and on the bottom edge y is zero. The top edge may be oppositely parameterized by $x=t, y=1,0 \leq t \leq 1$ so

$$
\int_{C} y d x=-\int_{0}^{1} 1 d t=-1
$$

Green's Theorem says the line integral is the integral of the curl of \mathbf{F} over the square; this curl is -1 so the integral over the square is also -1 as the square has area 1 .
4. 15 pts. Use Green's Theorem to express

$$
\int_{C} x y d x+x^{2} d y
$$

as an iterated integral where C is the first quadrant loop of the curve with polar eqation $r=\sin 2 \theta$ traversed in the counterclockwise sense.

Solution. The curl of $x y \mathbf{i}+x^{2} \mathbf{j}$ is x so Green's Theorem says that line integral in question is

$$
\iint_{R} x d x d y
$$

where R is the interior of the loop. Changing to polar coordinates, we may express this double integral as

$$
\int_{0}^{\pi / 2} \int_{0}^{\sin 2 \theta}(r \cos \theta) r d r d \theta
$$

5. 15 pts. Express

$$
\iint_{S} \mathbf{F} \bullet \mathbf{n} d S
$$

as an iterated integral; here $\mathbf{F}=2 x \mathbf{i}+2 y \mathbf{j}+3 \mathbf{k}, S$ is the part of $z=4-x^{2}-y^{2}$ lying above the $x y$-plane and \mathbf{n} is the downward pointing unit normal to S.

Solution. We may parameterize S by

$$
\mathbf{r}(x, y)=\left(x, y, 4-x^{2}-y^{2}\right),(x, y) \in R=\left\{(x, y): x^{2}+y^{2} \leq 4\right\}
$$

We then have

$$
\mathbf{r}_{x} \times \mathbf{r}_{y}=(2 x, 2 y, 1) \text { for }(x, y) \in R
$$

Thus, as $\mathbf{r}_{x} \times \mathbf{r}_{y}$ points $u p$, the surface integral is given by

$$
-\iint_{R}(2 x, 2 y, 3) \bullet(2 x, 2 y, 1) d x d y=-\iint_{R} 4 x^{2}+4 y^{2}+3 d x d y=-\int_{0}^{2 \pi} \int_{0}^{2}\left(4 r^{2}+3\right) r d r d \theta
$$

6. 15 pts. Use the Divergence Theorem to express

$$
\iint_{S} \mathbf{F} \bullet \mathbf{n} d S
$$

as an iterated integral; here $\mathbf{F}=-y \mathbf{i}+x \mathbf{j}, S$ is the boundary of the solid bounded by the coordinate planes and the the plane $x+y+z=1$ and where \mathbf{n} is unit normal to S which points out of this solid.

Solution. The divergence of \mathbf{F} is zero so the the answer is zero. A more interesting problem, and the one I intended to give, is when $\mathbf{F}=x y z \mathbf{k}$, which I now solve. Let T be the solid. We have $\nabla \bullet \mathbf{F}=x y$ so, by the Divergence Theorem, the surface integral equals

$$
\iiint_{T} x y d x d y d z=\int_{0}^{1} \int_{0}^{1-x} \int_{0}^{1-x-y} x y d x d y d z
$$

7. 30 pts. Evaluate both sides of Stokes' Theorem where S is part of the cylinder $x^{2}+y^{2}=4$ between the planes $z=0$ and $z=2$ with unit normal \mathbf{n} pointing toward the z-axis and where $\mathbf{F}=z^{2} \mathbf{j}$. (The surface
integral neet only be expressed as an iterated integral and the line integral need only be expressed as a definite integral.)

Solution. Let $C^{\text {top }}$ be the circle where $z=2$ oriented in the counterclockwise sense and let $C^{\text {bot }}$ be the circle where $z=0$ oriented in the clockwise sense. Note that because \mathbf{n} points inward that these are the correct orientations for Stokes' Theorem. Because \mathbf{F} vanishes on $C^{\mathbf{b o t}}$,

$$
\int_{C} \mathbf{F} \bullet \mathbf{T} d s=\int_{C^{\text {top }}} \mathbf{F} \bullet \mathbf{T} d s=\int_{C^{\text {top }}} z^{2} d y=2^{2} \int_{0}^{2 \pi} d(2 \sin \theta)=0 .
$$

On the other hand, we may parameterize S by

$$
\mathbf{r}(\theta, z)=(\cos \theta, \sin \theta, z),(\theta, z) \in R=(0,2 \pi) \times(0,2)
$$

in class we found that

$$
\mathbf{r}_{\theta} \times \mathbf{r}_{z}(\theta, z)=(\cos \theta, \sin \theta, 0)
$$

for $\theta, z) \in R$. Thus, as this cross product points away from the z-axis, we find that

$$
\iint_{S} \nabla \times \mathbf{F} \bullet \mathbf{n} d S=-\iint_{R}(0,-2 z, 0) \bullet(\cos \theta, \sin \theta, 0) d z d \theta=-\int_{0}^{2 \pi} \int_{0}^{2}-2 z \sin \theta d z d \theta=0 .
$$

That's all folks!

