I have neither given nor received aid in the completion of this test.

Signature:

To get full credit you must show enough work to convince me that you know what you are doing!

1. 10 pts. Evaluate:

$$
\int_{0}^{1}\left(\int_{x^{2}}^{x} \frac{2 y}{x^{2}} d y\right) d x
$$

Solution.

$$
\left.\int_{0}^{1} \frac{y^{2}}{x^{2}}\right|_{y=x^{2}} ^{y=x} d x=\int_{0}^{1} \frac{x^{2}-x^{4}}{x^{2}} d x=\int_{0}^{1} 1-x^{2} d x=\frac{2}{3}
$$

2. Let R be the region in \mathbf{R}^{2} within the circle $x^{2}+y^{2}=2$ and above the line $y=x$.
a. 10 pts. Express

$$
I=\iint_{R} \sqrt{1+x^{2}+y^{2}} d x d y
$$

as a sum of two iterated integrals in rectangular coordinates.

Solution. Draw a picture. Look at what happens when x is between $-\sqrt{2}$ and -1 and when x is between -1 and 1. Conclude that

$$
\int_{-\sqrt{2}}^{-1} \int_{-\sqrt{2-x^{2}}}^{\sqrt{2-x^{2}}} \sqrt{1+x^{2}+y^{2}} d y d x+\int_{-1}^{1} \int_{x}^{\sqrt{2-x^{2}}} \sqrt{1+x^{2}+y^{2}} d y d x
$$

b. 10 pts. Express I as an iterated integral using polar coordinates.

Solution.

$$
\int_{\pi / 4}^{5 \pi / 4} \int_{0}^{\sqrt{2}} \sqrt{1+r^{2}} r d r d \theta
$$

3. Let R be the part of the region in \mathbf{R}^{3} bounded by $x^{2}+y^{2}+z^{2}=2$ which is above $z=\sqrt{x^{2}+y^{2}}$.
a. 10 pts. Express

$$
I=\iiint_{R} x^{2}+y^{2} d x d y d z
$$

as an iterated integral in rectangular coordinates.

Solution. Note that the projection of R on the $x y$-plane is the circle of radius 1 with center at the origin. Thus

$$
\int_{-1}^{1} \int_{-\sqrt{1-x^{2}}}^{\sqrt{1-x^{2}}} \int_{\sqrt{x^{2}+y^{2}}}^{\sqrt{2-x^{2}-y^{2}}} x^{2}+y^{2} d z d y d x
$$

b. 10 pts. Express I as an iterated integral in cylindrical coordinates.

Solution.

$$
\int_{0}^{1} \int_{0}^{2 \pi} \int_{r}^{\sqrt{2-r^{2}-z^{2}}} r^{2} r d z d \theta d r
$$

c. 10 pts. Express I as an iterated integral in spherical coordinates.

Solution.

$$
\int_{0}^{\sqrt{2}} \int_{0}^{\pi / 4} \int_{0}^{2 \pi}(\rho \sin \phi)^{2} \rho^{2} \sin \phi d \theta d \phi d \rho
$$

4. 10 pts. Let A be the surface area of the part of $z=\sqrt{x^{2}+y^{2}}$ below $z=2$. Express A as an iterated integral.

Solution. We may parameterize this surface by $\mathbf{r}(r, \theta)=(r \cos \theta, r \sin \theta, r)$ where $0<r<2$ and $0<\theta<2 \pi$. We have

$$
\mathbf{r}_{r}=(\cos \theta, \sin \theta, 1), \quad \mathbf{r}_{\theta}=r(-\sin \theta, \cos \theta, 0)
$$

Since these vector are perpendicular the length of their cross product is the product of their lengths. Thus

$$
\left|\mathbf{r}_{r} \times \mathbf{r}_{\theta}\right|=\sqrt{2} r
$$

so the answer is

$$
\int_{0}^{2} \int_{0}^{2 \pi} \sqrt{2} r d \theta d r
$$

5. 10 pts. Express the area of the part of the cylinder $x^{2}+y^{2}=1$ where $0<z<x^{2}$ as an iterated integral.

Solution. We may parameterize the cylinder $x^{2}+y^{2}=1$ by $\mathbf{r}(\theta, z)=(\cos \theta, \sin \theta, z)$ where $-\infty<r<\infty$ and $0<\theta<2 \pi$. We have

$$
\mathbf{r}_{\theta}=(-\sin \theta, \cos \theta, 0), \quad \mathbf{r}_{z}=(0,0,1)
$$

DSince these vector are perpendicular the length of their cross product is the product of their lengths. Thus

$$
\left|\mathbf{r}_{\theta} \times \mathbf{r}_{z}\right|=1
$$

Now we only want the area where $0<z<x^{2}=(r \cos \theta)^{2}$ so the answer is

$$
\int_{0}^{2 \pi} \int_{0}^{(r \cos \theta)^{2}} d z d \theta
$$

6. 10 pts. Let R be the region in \mathbf{R}^{2} bounded by $x=1, x=2, x y=3$ and $x y=4$. Use the change of variables $u=x, v=x y$ to compute the area of R.

Solution. We have $x=u, y=v / u$. Letting $T(u, v)=(u, v / u)$ for (u, v) in $Q=(1,2) \times(3,4)$ we find that T carries Q in one-to-one fashion onto R. Moreover

$$
J_{T}(u, v)=\operatorname{det}\left[\begin{array}{ll}
x_{u} & x_{v} \\
y_{u} & y_{v}
\end{array}\right]=\left[\begin{array}{cc}
1 & 0 \\
-v / u^{2} & 1 / u
\end{array}\right]
$$

the determinant of which is $1 / u$. Thus

$$
\text { Area } R=\iint_{Q} J_{T}(u, v) d u d v=\int_{1}^{2} \int_{3}^{4} \frac{1}{u} d v d u
$$

That's all folks!

