I have neither given nor received aid in the completion of this test.

 Signature:To get full credit you must show enough work to convince me that you know what you are doing!

1. 10 pts. Does

$$
\lim _{(x, y, z) \rightarrow(0,0,0)} \frac{x y z}{x^{2}+y^{2}+z^{2}}
$$

exist? As it says above, to get full credit you must justify your answer; you get half credit if your answer is correct but your justification is not.

Solution. Let $r=\sqrt{x^{2}+y^{2}+z^{2}}$. We have

$$
\left|\frac{x y z}{x^{2}+y^{2}+z^{2}}\right|=\left|\frac{x}{r} \frac{y}{r} \frac{z}{r}\right| r \leq r .
$$

Let $\epsilon>0$. It follows that

$$
r=|(x, y, z)-(0,0,0)|<\epsilon \Rightarrow\left|\frac{x y z}{x^{2}+y^{2}+z^{2}}-0\right|<\epsilon
$$

so the limit exists and is zero.
2. 5 pts. Let $f(x, y)=x^{2} y$. Find

$$
\lim _{h \rightarrow 0} \frac{f(1+h, 2+3 h)-f(1,2)}{h}
$$

Solution. Let $x(t)=1+t$ and let $y(t)=2+3 t$. The above limit is just

$$
\frac{d}{d t} f(x(t), y(t) \mid t=0
$$

which by the chain rule is

$$
\frac{\partial f}{\partial x}(1,2) x^{\prime}(0)+\frac{\partial f}{\partial y}(1,2) y^{\prime}(0)=41+13=7
$$

as $\frac{\partial f}{\partial x}(x, y)=2 x y$ so $\frac{\partial f}{\partial x}(1,2)=4$ and $\frac{\partial f}{\partial y}(x, y)=x^{2}$ so $\frac{\partial f}{\partial x}(1,2)=1$.
3. $5 \mathrm{pts}$. Find an equation for the tangent plane to the graph of $f(x, y)=x y$ at $(1,2,2)$.

Solution. Let $F(x, y, z)=z-x y$. Note that $\nabla F(x, y, z)=(-y,-x, 1)$. The normal to the tangent plane is $\nabla F(1,2,2)=(-2,-1,1)$ so an equation for the plane is

$$
-2(x-1)-(y-2)+(z-1)=0
$$

4. $\mathbf{5} \mathbf{p t s}$. Find an equation for the the tangent plane to $\{(x, y, z): x y z=6\}$ at $(1,2,3)$.

Solution. Let $F(x, y, z)=x y z$. Note that $\nabla F(x, y, z)=(y z, x z, x y)$. The normal to the tangent plane is $\nabla F(1,2,3)=(6,3,2)$ so an equation for the plane is

$$
6(x-1)+3(y-2)+2(z-3)=0 .
$$

5. 10 pts. Suppose F is a function of two variables such that

$$
\frac{\partial F}{\partial x}(x, y)=y^{2}+1, \quad \frac{\partial F}{\partial y}(x, y)=2 x y .
$$

Calculate

$$
\left.\frac{d}{d t} F(\cos t, \sin t)\right|_{t=\pi / 2}
$$

Solution. By the chain rule, the answer is

$$
\left.\left.\frac{\partial F}{\partial x}(\cos t, \sin t)\right|_{t=\pi / 2} \frac{d}{d t} \cos t\right|_{t=\pi / 2}+\left.\left.\frac{\partial F}{\partial y}(\cos t, \sin t)\right|_{t=\pi / 2} \frac{d}{d t} \sin t\right|_{t=\pi / 2}=-2 .
$$

6. 10 pts . Suppose F is a function of three variables such that

$$
\frac{\partial F}{\partial x}(3,5,2)=1, \quad \frac{\partial F}{\partial y}(3,5,2)=2, \quad \frac{\partial F}{\partial z}(3,5,2)=3 .
$$

Suppose

$$
x(u, v)=u+v, \quad y(u, v)=u^{2}+v^{2}, \quad z(u, v)=u v .
$$

Let $f(u, v)=F(x(u, v), y(u, v), z(u, v))$. Calculate

$$
\frac{\partial f}{\partial u}(1,2), \quad \frac{\partial f}{\partial v}(1,2) .
$$

Solution. Note that $(x(1,2), y(1,2), z(1,2))=(3,5,2)$. By the chain rule,

$$
\frac{\partial f}{\partial u}(1,2)=\frac{\partial F}{\partial x}(3,5,2) \frac{\partial x}{\partial u}(1,2)+\frac{\partial F}{\partial y}(3,5,2) \frac{\partial y}{\partial u}(1,2)+\frac{\partial F}{\partial z}(3,5,2) \frac{\partial z}{\partial u}(1,2)=1 \cdot 1+2 \cdot 2+3 \cdot 2=10
$$

and

$$
\frac{\partial f}{\partial v}(1,2)=\frac{\partial F}{\partial x}(3,5,2) \frac{\partial x}{\partial v}(1,2)+\frac{\partial F}{\partial y}(3,5,2) \frac{\partial y}{\partial v}(1,2)+\frac{\partial F}{\partial z}(3,5,2) \frac{\partial z}{\partial v}(1,2)=1 \cdot 1+2 \cdot 4+3 \cdot 1=12
$$

7. 10 pts. Determine the point(s) on $\left\{(x, y): x^{2}+y^{2}=1\right\}$ where $f(x, y)=x^{2} y$ attains its maximum and minimum values.

Solution. Let $F(x, y)=x^{2}+y^{2}$. By the method of Lagrange multipliers,

$$
\nabla f(x, y)=\lambda \nabla F(x, y)
$$

for some λ at any maximum point (x, y) which amounts to

$$
2 x y=2 \lambda x \quad \text { and } \quad x^{2}=2 \lambda y
$$

If we allow $x=0$ then $y= \pm 1$ and $f(x, y)=0$. If $x \neq 0$ then the first equation gives $\lambda=y$ which, when substituted in the second equation, gives $x^{2}=2 y^{2}$ or $y= \pm x / \sqrt{2}$. Keeping in mind that $x^{2}+y^{2}=1$ we obtain the points $\left(\sqrt{\frac{2}{3}}, \sqrt{\frac{1}{3}}\right),\left(-\sqrt{\frac{2}{3}}, \sqrt{\frac{1}{3}}\right),\left(-\sqrt{\frac{2}{3}},-\sqrt{\frac{1}{3}}\right),\left(-\sqrt{\frac{2}{3}}, \sqrt{\frac{1}{3}}\right)$ as candidates for maximum/minimum points on which f is $\frac{2}{3 \sqrt{3}}, \frac{2}{3 \sqrt{3}},-\frac{2}{3 \sqrt{3}},-\frac{2}{3 \sqrt{3}}$, respectively. Thus the maxima are the first two and the minima are the last two of these four points.

Alternatively, you can find the points where $\nabla\left(x^{2} y\right) \times \nabla\left(x^{2}+y^{2}\right)=\mathbf{0}$ and $x^{2}+y^{2}=1$.
8. 20 pts. Let $T=\{(x, y): y \geq 0, y \leq-2 x+2$ and $y \leq 2 x+2\}$; note that T is a closed triangle with vertices $(-1,0),(0,2),(1,0)$. Let $f(x, y)=x y-x$. Determine the point(s) on T where f attains its maximum and minimum values.

Solution. We have that $\partial f / \partial x(x, y)=y-1$ and $\frac{\partial f}{y}(x, y)=x$ so $(0,1)$ is the unique critical point of f. It is a candidate for a maximum/minimum as it is interior to T.
$(0,1) \ni x \mapsto(x,-2 x+2)$ parameterizes the upper right hand side of T and

$$
\frac{d}{d x} f(x,-2 x+2)=\frac{d}{d x} x(-2 x+2)-x=-4 x+1
$$

which is zero when $x=1 / 4$ so $(1 / 4,3 / 2)$ is a candidate for a maximum/minimum.
$(-1,0) \ni x \mapsto(x, 2 x+2)$ parameterizes the upper left hand side of T and

$$
\frac{d}{d x} f(x, 2 x+2)=\frac{d}{d x} x(2 x+2)-x=4 x+1
$$

which is zero when $x=-1 / 4$ so $(-1 / 4,3 / 2)$ is a candidate for a maximum/minimum.
$f(x, 0)=-x$ on the x-axis so there are no maxima/minima ont the bootom of T. The three vertices $(-1,0),(0,2),(1,0)$ are candidates for maxima/minima.

Now $f(0,1)=0, f(1 / 4,3 / 2)=1 / 8, f(-1 / 4,3 / 2)=-1 / 8, f(-1,0)=1, f(0,2)=0$ and $f(1,0)=-1$. Thus $(1,0)$ is the unique minimum and $(0,2)$ is the unique maximum for f on T
9. 15 pts. Find the point(s) at which z is largest on $\left\{(x, y, z): x^{2}+2 y^{2}+3 z^{2}=1\right.$ and $\left.x+2 y+3 z=0\right\}$.

Solution. Let $f(x, y, z)=z, F(x, y, z)=x^{2}+y^{2}+z^{2}$ and let $G(x, y, z)=x+2 y+3 z$. By the method of Lagrange multipliers, if (x, y, z) is a maximum/minimum on the set where $F=1$ and $G=0$ then

$$
\nabla f(x, y, z)=\lambda \nabla F(x, y, z)+\mu \nabla G(x, y, z)
$$

for some λ, μ, which amounts to

$$
0=2 \lambda x+\mu, \quad 0=4 \lambda y+2 \mu, \quad 1=6 \lambda z+3 \mu
$$

Note that it is impossible that $\lambda=0$. The first equation says that $\mu=-2 \lambda x$ which, when substituted in the second equation gives $0=4 \lambda y-4 \lambda x$ so, as $\lambda \neq 0$, gives $x=y$. Since $x+2 y+3 z=0$ we find that $z=-x$. Since $x^{2}+2 y^{2}+3 z^{2}=1$ we find that $x= \pm 1 / \sqrt{6}$. Thus the points $1 / \sqrt{6}(1,1,-1)$ and $1 / \sqrt{6}(-1,-1,1)$ are the only possibilities for maxima/minima. It follows that $1 / \sqrt{6}(-1,-1,1)$ is the unique maximum point for z on $F+1$ and $G=0$.

Alternatively, you can find the point(s) where $F=1, G=0$ and where the triple product $[\nabla f, \nabla F, \nabla G]$ is zero.

That's all folks!

