Test One

I have neither given nor received aid in the completion of this test. Signature:

To get full credit you must show enough work to convince me that you know what you are doing!

1. 25 pts. Let $\mathbf{a} = (3, 0, 4)$ let $\mathbf{b} = (-1, -1, -1)$ and let $\mathbf{c} = (4, 0, -1)$. Compute:

$$\mathbf{a} + 3\mathbf{b} - 4\mathbf{c}, \quad \mathbf{a} \bullet \mathbf{b}, \quad \mathbf{a} \times \mathbf{c}, \quad |3\mathbf{c}|, \quad [\mathbf{a}, \mathbf{b}, \mathbf{c}].$$

Solution.

$$\mathbf{a} + 3\mathbf{b} - 4\mathbf{c} = (3, 0, 4) + (-3, -3, -3) + (-16, 0, 4) = (-16, -3, 5);$$

$$\mathbf{a} \bullet \mathbf{b} = -7$$

$$\mathbf{a} \times \mathbf{c} = (0, 19, 0)$$

$$|3\mathbf{c}| = 3\sqrt{17}$$

$$[\mathbf{a}, \mathbf{b}, \mathbf{c}] = 19.$$

2. 10 pts. Write down an equation whose solution set is the plane containing the three points (1, 2, 3), (3, 2, 1), (1, 1, 0).

Solution. A normal to this plane is

$$((1,2,3) - (1,1,0)) \times ((3,2,1) - (1,1,0)) = (0,1,3) \times (2,1,1) = (-2,6,-2)$$

and a vector in the plane is (1,1,0) so if $\mathbf{x} = (x, y, z)$ is any point in the plane we have

$$(\mathbf{x} - (1, 1, 0)) \bullet (-2, 6, -2) = 0$$

or

$$-2x + 6y - 2z = 4.$$

3. 10 pts. Let *L* be the line $\{(1, 1, 0) + t(1, 2, 3) : t \in \mathbf{R}\}$ and let $\mathbf{c} = (3, 2, 1)$. Show that $\mathbf{c} \notin L$ and write down an equation whose solution set is the plane containing *L* and \mathbf{c} .

Solution. Suppose $\mathbf{c} = (1, 1, 0) + t(1, 2, 3)$ for some $t \in \mathbf{R}$. Then 3 = 1 + t, 2 = 1 + 2t, 1 = 3t which is clearly impossible so $\mathbf{c} \in L$.

The sought after plane contains the three points (1, 1, 0) (t = 0), (2, 3, 3) (t = 1) and (3, 2, 1). Thus a normal to this plane is

$$((2,3,3) - (1,1,0)) \times ((3,2,1) - (1,1,0)) = (1,2,3) \times (2,1,1) = (-1,5,-3).$$

Thus the plane is the solution set of

$$(\mathbf{x} - (1, 1, 0)) \bullet (-1, 5, -3) = 0$$

where $\mathbf{x} = (x, y, z)$ or

$$-x + 5y - 3z = 4.$$

4. 15 pts. Let

$$L = \{ \mathbf{x} \in \mathbf{R}^3 : \mathbf{x} \times (1, 1, 0) = (2, -2, 1) \}.$$

I tell you that L is a line and ask you to exhibit vectors **a** and **b** such that $L = \{\mathbf{a} + t\mathbf{b} : t \in \mathbf{R}\}$.

Solution. Set $\mathbf{x} = (x, y, z)$ and calculate $\mathbf{x} \times (1, 1, 0) = (-z, z, x - y)$; this vector equals (2, -2, 1) if and only if z = -2 and x - y = 1. Thus $\mathbf{x} \in L$ if and only if (x, y, z) = (x, x - 1, -2) = (0, -1, -2) + (1, 1, 0). So we can take $\mathbf{a} = (0, -1, -2)$ and $\mathbf{b} = (1, 1, 0)$.

5. 10 pts. Let the plane curve **P** be defined by setting $\mathbf{P}(t) = (2e^t, e^{2t})$ for $t \in \mathbf{R}$. Determine a real valued function f of a real variable whose graph contains the range of **P**. (In the parlance of the book, $x = 2e^t$ and $y = e^{2t}$ and you have to eliminate t.)

Solution. Set $x = 2e^t$ and $y = e^{2t}$. Then $y = e^{2t} = (e^t)^2 = (x/2)^2$ so we can set $f(x) = (x/2)^2$ for $x \in \mathbf{R}$.

6. 15 pts. Prove or disprove:

$$(\mathbf{a} - \mathbf{b}) \times (\mathbf{a} + \mathbf{b}) = 2(\mathbf{a} \times \mathbf{b})$$
 for all $\mathbf{a}, \mathbf{b} \in \mathbf{R}^3$.

Solution. Using properties of the cross product we obtain

$$(\mathbf{a} - \mathbf{b}) \times (\mathbf{a} + \mathbf{b}) = \mathbf{a} \times \mathbf{a} + \mathbf{a} \times \mathbf{b} - \mathbf{b} \times \mathbf{a} - \mathbf{b} \times \mathbf{b} = \mathbf{0} + \mathbf{a} \times \mathbf{b} + \mathbf{a} \times \mathbf{b} - \mathbf{0} = 2(\mathbf{a} \times \mathbf{b})$$

7. 25 pts. Let $\mathbf{P}(t) = (t, t^2, t^3)$ for $0 < t < \infty$. Compute the velocity, speed, acceleration and curvature of **P**. Say what how the curvature behaves as $t \to \infty$.

Solution. We have

$$\begin{split} \frac{d\mathbf{P}}{dt} &= (1, 2t, 3t^2); \\ |\frac{d\mathbf{P}}{dt}| &= \sqrt{1 + 4t^2 + 9t^4}; \\ \frac{d^2\mathbf{P}}{dt^2} &= (0, 2, 6t); \\ \kappa &= \frac{|\frac{d\mathbf{P}}{dt} \times \frac{d^2\mathbf{P}}{dt^2}|}{|\frac{d\mathbf{P}}{dt}|^3} = \frac{|(6t^2, -6t, 2)|}{(1 + 4t^2 + 9t^4)^{3/2}} = \frac{(36t^4 + 36t^2 + 4)^{1/2}}{(1 + 4t^2 + 9t^4)^{3/2}} \end{split}$$

In the curvature, as $t \to \infty$, the dominant term in the numerator is t and the dominant term in the denominator is t^2 ; thus the curvature tends to zero as $t \to \infty$.

8. 25 pts. Suppose **a** and **b** are distinct vectors in \mathbb{R}^3 and r and s are positive numbers such each of which is less than $|\mathbf{b} - \mathbf{a}|$ and whose sum is greater than $|\mathbf{b} - \mathbf{a}|$. Let $R = {\mathbf{x} \in \mathbb{R}^3 : |\mathbf{x} - \mathbf{a}| = r}$ and let

 $S = {\mathbf{x} \in \mathbf{R}^3 : |\mathbf{x} - \mathbf{b}| = s}$. I tell you that $R \cap S$ is a circle. Determine the center and radius of this circle as well as a vector which is normal to the plane containing this circle.

Solution. Let **c** be the center of the circle. Then **c** lies on the segment joining **a** to **b** so $\mathbf{c} = (1 - t)\mathbf{a} + t\mathbf{b}$ for some $t \in (0, 1)$. If **x** is a point on the circle we have from the Pythagorean Theorem that

$$r^{2} = |\mathbf{x} - \mathbf{a}|^{2} = |\mathbf{x} - \mathbf{c}|^{2} + |\mathbf{c} - \mathbf{a}|^{2}$$
 and $s^{2} = |\mathbf{x} - \mathbf{b}|^{2} = |\mathbf{x} - \mathbf{c}|^{2} + |\mathbf{c} - \mathbf{b}|^{2}$.

Subtracting these two and noting that $|\mathbf{c} - \mathbf{a}| = t|\mathbf{b} - \mathbf{a}|$ and $|\mathbf{c} - \mathbf{b}| = (1 - t)|\mathbf{b} - \mathbf{a}|$ we find that

$$r^2-s^2\ =\ (t^2-(1-t)^2)|\mathbf{b}-\mathbf{a}|^2\ =\ (2t-1)|\mathbf{b}-\mathbf{a}|^2$$

 \mathbf{SO}

$$t = \frac{1}{2} (r^2 - s^2 + |\mathbf{b} - \mathbf{a}|^2)$$

The square of the radius of the circle is

$$r^{2} - |\mathbf{c} - \mathbf{a}|^{2} = s^{2} - |\mathbf{c} - \mathbf{b}|^{2}$$

and a normal to the plane of the circle is $\mathbf{b} - \mathbf{a}$.

That's all folks!