I have neither given nor received aid in the completion of this test. Signature:

To get full credit you must show enough work to convince me that you know what you are doing!

1. 25 pts. Let $\mathbf{a}=(3,0,4)$ let $\mathbf{b}=(-1,-1,-1)$ and let $\mathbf{c}=(4,0,-1)$. Compute:

$$
\mathbf{a}+3 \mathbf{b}-4 \mathbf{c}, \quad \mathbf{a} \bullet \mathbf{b}, \quad \mathbf{a} \times \mathbf{c}, \quad|3 \mathbf{c}|, \quad[\mathbf{a}, \mathbf{b}, \mathbf{c}] .
$$

Solution.

$$
\begin{aligned}
\mathbf{a}+3 \mathbf{b}-4 \mathbf{c} & =(3,0,4)+(-3,-3,-3)+(-16,0,4)=(-16,-3,5) \\
\mathbf{a} \bullet \mathbf{b} & =-7 \\
\mathbf{a} \times \mathbf{c} & =(0,19,0) \\
|3 \mathbf{c}| & =3 \sqrt{17} \\
{[\mathbf{a}, \mathbf{b}, \mathbf{c}] } & =19
\end{aligned}
$$

2. 10 pts. Write down an equation whose solution set is the plane containing the three points $(1,2,3),(3,2,1),(1,1,0)$.

Solution. A normal to this plane is

$$
((1,2,3)-(1,1,0)) \times((3,2,1)-(1,1,0))=(0,1,3) \times(2,1,1)=(-2,6,-2)
$$

and a vector in the plane is $(1,1,0)$ so if $\mathbf{x}=(x, y, z)$ is any point in the plane we have

$$
(\mathbf{x}-(1,1,0)) \bullet(-2,6,-2)=0
$$

or

$$
-2 x+6 y-2 z=4
$$

3. 10 pts. Let L be the line $\{(1,1,0)+t(1,2,3): t \in \mathbf{R}\}$ and let $\mathbf{c}=(3,2,1)$. Show that $\mathbf{c} \notin L$ and write down an equation whose solution set is the plane containing L and \mathbf{c}.

Solution. Suppose $\mathbf{c}=(1,1,0)+t(1,2,3)$ for some $t \in \mathbf{R}$. Then $3=1+t, 2=1+2 t, 1=3 t$ which is clearly impossible so $\mathbf{c} \in L$.

The sought after plane contains the three points $(1,1,0)(t=0),(2,3,3)(t=1)$ and $(3,2,1)$. Thus a normal to this plane is

$$
((2,3,3)-(1,1,0)) \times((3,2,1)-(1,1,0))=(1,2,3) \times(2,1,1)=(-1,5,-3)
$$

Thus the plane is the solution set of

$$
(\mathrm{x}-(1,1,0)) \bullet(-1,5,-3)=0
$$

where $\mathbf{x}=(x, y, z)$ or

$$
-x+5 y-3 z=4
$$

4. 15 pts. Let

$$
L=\left\{\mathbf{x} \in \mathbf{R}^{3}: \mathbf{x} \times(1,1,0)=(2,-2,1)\right\}
$$

I tell you that L is a line and ask you to exhibit vectors \mathbf{a} and \mathbf{b} such that $L=\{\mathbf{a}+t \mathbf{b}: t \in \mathbf{R}\}$.
Solution. Set $\mathbf{x}=(x, y, z)$ and calculate $\mathbf{x} \times(1,1,0)=(-z, z, x-y)$; this vector equals $(2,-2,1)$ if and only if $z=-2$ and $x-y=1$. Thus $\mathbf{x} \in L$ if and only if $(x, y, z)=(x, x-1,-2)=(0,-1,-2)+(1,1,0)$. So we can take $\mathbf{a}=(0,-1,-2)$ and $\mathbf{b}=(1,1,0)$.
5. 10 pts. Let the plane curve \mathbf{P} be defined by setting $\mathbf{P}(t)=\left(2 e^{t}, e^{2 t}\right)$ for $t \in \mathbf{R}$. Determine a real valued function f of a real variable whose graph contains the range of \mathbf{P}. (In the parlance of the book, $x=2 e^{t}$ and $y=e^{2 t}$ and you have to eliminate t.)

Solution. Set $x=2 e^{t}$ and $y=e^{2 t}$. Then $y=e^{2 t}=\left(e^{t}\right)^{2}=(x / 2)^{2}$ so we can set $f(x)=(x / 2)^{2}$ for $x \in \mathbf{R}$.
6. 15 pts. Prove or disprove:

$$
(\mathbf{a}-\mathbf{b}) \times(\mathbf{a}+\mathbf{b})=2(\mathbf{a} \times \mathbf{b}) \quad \text { for all } \mathbf{a}, \mathbf{b} \in \mathbf{R}^{3}
$$

Solution. Using properties of the cross product we obtain

$$
(\mathbf{a}-\mathbf{b}) \times(\mathbf{a}+\mathbf{b})=\mathbf{a} \times \mathbf{a}+\mathbf{a} \times \mathbf{b}-\mathbf{b} \times \mathbf{a}-\mathbf{b} \times \mathbf{b}=\mathbf{0}+\mathbf{a} \times \mathbf{b}+\mathbf{a} \times \mathbf{b}-\mathbf{0}=2(\mathbf{a} \times \mathbf{b})
$$

7. 25 pts. Let $\mathbf{P}(t)=\left(t, t^{2}, t^{3}\right)$ for $0<t<\infty$. Compute the velocity, speed, acceleration and curvature of \mathbf{P}. Say what how the curvature behaves as $t \rightarrow \infty$.

Solution. We have

$$
\begin{aligned}
\frac{d \mathbf{P}}{d t} & =\left(1,2 t, 3 t^{2}\right) \\
\left|\frac{d \mathbf{P}}{d t}\right| & =\sqrt{1+4 t^{2}+9 t^{4}} \\
\frac{d^{2} \mathbf{P}}{d t^{2}} & =(0,2,6 t) \\
\kappa & =\frac{\left|\frac{d \mathbf{P}}{d t} \times \frac{d^{2} \mathbf{P}}{d t^{2}}\right|}{\left|\frac{d \mathbf{P}}{d t}\right|^{3}}=\frac{\left|\left(6 t^{2},-6 t, 2\right)\right|}{\left(1+4 t^{2}+9 t^{4}\right)^{3 / 2}}=\frac{\left(36 t^{4}+36 t^{2}+4\right)^{1 / 2}}{\left(1+4 t^{2}+9 t^{4}\right)^{3 / 2}}
\end{aligned}
$$

In the curvature, as $t \rightarrow \infty$, the dominant term in the numerator is t and the dominant term in the denominator is t^{2}; thus the curvature tends to zero as $t \rightarrow \infty$.
8. 25 pts. Suppose \mathbf{a} and \mathbf{b} are distinct vectors in \mathbf{R}^{3} and r and s are positive numbers such each of which is less than $|\mathbf{b}-\mathbf{a}|$ and whose sum is greater than $|\mathbf{b}-\mathbf{a}|$. Let $R=\left\{\mathbf{x} \in \mathbf{R}^{3}:|\mathbf{x}-\mathbf{a}|=r\right\}$ and let
$S=\left\{\mathbf{x} \in \mathbf{R}^{3}:|\mathbf{x}-\mathbf{b}|=s\right\}$. I tell you that $R \cap S$ is a circle. Determine the center and radius of this circle as well as a vector which is normal to the plane containing this circle.

Solution. Let \mathbf{c} be the center of the circle. Then \mathbf{c} lies on the segment joining \mathbf{a} to \mathbf{b} so $\mathbf{c}=(1-t) \mathbf{a}+t \mathbf{b}$ for some $t \in(0,1)$. If \mathbf{x} is a point on the circle we have from the Pythagorean Theorem that

$$
r^{2}=|\mathbf{x}-\mathbf{a}|^{2}=|\mathbf{x}-\mathbf{c}|^{2}+|\mathbf{c}-\mathbf{a}|^{2} \quad \text { and } \quad s^{2}=|\mathbf{x}-\mathbf{b}|^{2}=|\mathbf{x}-\mathbf{c}|^{2}+|\mathbf{c}-\mathbf{b}|^{2} .
$$

Subtracting these two and noting that $|\mathbf{c}-\mathbf{a}|=t|\mathbf{b}-\mathbf{a}|$ and $|\mathbf{c}-\mathbf{b}|=(1-t)|\mathbf{b}-\mathbf{a}|$ we find that

$$
r^{2}-s^{2}=\left(t^{2}-(1-t)^{2}\right)|\mathbf{b}-\mathbf{a}|^{2}=(2 t-1)|\mathbf{b}-\mathbf{a}|^{2}
$$

So

$$
t=\frac{1}{2}\left(r^{2}-s^{2}+|\mathbf{b}-\mathbf{a}|^{2}\right)
$$

The square of the radius of the circle is

$$
r^{2}-|\mathbf{c}-\mathbf{a}|^{2}=s^{2}-|\mathbf{c}-\mathbf{b}|^{2}
$$

and a normal to the plane of the circle is $\mathbf{b}-\mathbf{a}$.

That's all folks!

