1.

a. $\quad \operatorname{div} \mathbf{F}=2 x z^{3}+6 x y^{2} z$
b. $\quad \mathbf{F}$ is conservative since $F=\nabla f$ where $f(x, y, z)=x y^{2} z^{3}$. Thus curl $\mathbf{F}=0$.
c. Since \mathbf{F} is conservative and C is a closed curve, the fundamental theorem gives $\oint_{C} \mathbf{F} \cdot d \mathbf{r}=\oint_{C} \nabla f \cdot d \mathbf{r}=0$.
2. By Green's theorem, $\oint_{C} \mathbf{F} \cdot d \mathbf{r}=\int_{0}^{1} \int_{0}^{x^{2}}(2 x+2 y) d y d x=2 / 5$.
3.
a. $\quad \frac{5 \sqrt{5}-1}{12}, \frac{1}{2}, \frac{2}{3}$
b. Parametrize $C: x=t, y=t^{2},-1 \leq t \leq 2$. Then, $\oint_{C} x y d x+(x+y) d y=\int_{-1}^{2}\left(3 t^{3}+2 t^{2}\right) d t=\frac{69}{4}$.
c. $\quad \oint_{C} \mathbf{F} \cdot \mathbf{T} d s=\oint_{C} y d x-x d y+z d z=\int_{0}^{\pi}\left(\cos ^{2} t+\sin ^{2} t+4 t\right) d t=\pi+2 \pi^{2}$.
4.
a. Conservative: $f(x, y)=x^{2} y^{2}+x^{3}+y^{4}$
b. Not conservative: Since $\frac{\partial P}{\partial y}=-x \sin y+\cos y$ and $\frac{\partial Q}{\partial x}=-y \sin x+\cos x$ and they are not equal, \mathbf{F} is not conservative.
c. $\quad f(x, y, z)=x y z+\frac{1}{2} y^{2}+z$
5.
a. Odd answers are in the back of the book. Let me know if you'd like to see a specific even number.
b. Using the given parametrization, $A=\oint_{C} x d y=\oint_{C}(a \cos t)(a \sin t) d t=a^{2} \int_{0}^{2 \pi} \frac{1}{2}(1+\cos 2 t) d t=\pi a^{2}$.
c. $\frac{\partial Q}{\partial x}-\frac{\partial P}{\partial y}=2 y-2 y=0$ so $W=0$.

