Math 103.01 Summer 2001 Assignment #5 Solutions

- 1. a. div $\mathbf{F} = 2xz^3 + 6xy^2z$
 - **b. F** is conservative since $F = \nabla f$ where $f(x, y, z) = xy^2 z^3$. Thus curl **F** = 0.

c. Since **F** is conservative and *C* is a closed curve, the fundamental theorem gives $\oint_C \mathbf{F} \cdot d\mathbf{r} = \oint_C \nabla f \cdot d\mathbf{r} = 0.$

2. By Green's theorem,
$$\oint_C \mathbf{F} \cdot d\mathbf{r} = \int_0^1 \int_0^{x^2} (2x + 2y) \, dy dx = 2/5$$

a. $\frac{5\sqrt{5}-1}{12}, \frac{1}{2}, \frac{2}{3}$

b. Parametrize C:
$$x = t, y = t^2, -1 \le t \le 2$$
. Then, $\oint_C xy \, dx + (x+y) \, dy = \int_{-1}^2 (3t^3 + 2t^2) \, dt = \frac{69}{4}$.
c. $\oint_C \mathbf{F} \cdot \mathbf{T} \, ds = \oint_C y \, dx - x \, dy + z \, dz = \int_0^\pi (\cos^2 t + \sin^2 t + 4t) \, dt = \pi + 2\pi^2$.

4.

a. Conservative:
$$f(x, y) = x^2y^2 + x^3 + y^4$$

b. Not conservative: Since $\frac{\partial P}{\partial y} = -x \sin y + \cos y$ and $\frac{\partial Q}{\partial x} = -y \sin x + \cos x$ and they are not equal, **F** is not conservative.

c.
$$f(x, y, z) = xyz + \frac{1}{2}y^2 + z$$

5.

a. Odd answers are in the back of the book. Let me know if you'd like to see a specific even number.

b. Using the given parametrization,
$$A = \oint_C x \, dy = \oint_C (a \cos t)(a \sin t) \, dt = a^2 \int_0^{2\pi} \frac{1}{2} (1 + \cos 2t) \, dt = \pi a^2 dt$$

c. $\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} = 2y - 2y = 0$ so $W = 0$.