Math 171 Prelim \#1 - Solutions

1. (a) Let X be the monthly income of a randomly chosen male Cornell graduate. Let Y be the monthly income of a randomly chosen female Cornell graduate. The total monthly income is then $X+Y$ and the difference is $X-Y$. (Note the difference is not $|X-Y|$, which is called the absolute difference. There is no way you may calculate the expectation of the absolute difference given the information. It is equivalent to define the difference as $Y-X$.)
(b) No extra assumption is needed for the following calculations. The mean of the total income is $E(X+Y)=E(X)+E(Y)=5000+5000=10,000$, and the mean of the difference is $E(X-Y)=E(X)-E(Y)=5000-5000=0$.
(c) We need to assume that X and Y are independent in the following calculations: $\operatorname{Var}(X+Y)=\operatorname{Var}(X)+\operatorname{Var}(Y)=(2000)^{2}+(3000)^{2}=13,000,000$. Hence $\operatorname{SD}(X+Y)=$ $\sqrt{\operatorname{Var}(X+Y)}=\sqrt{13,000,000}=3,605$. Similarly, $\operatorname{Var}(X-Y)=\operatorname{Var}(X)+\operatorname{Var}(Y)=$ $(2000)^{2}+(3000)^{2}=13,000,000$ so that $\mathrm{SD}(X-Y)=\sqrt{\operatorname{Var}(X-Y)}=\sqrt{13,000,000}=$ 3, 605 .
2. (a) The two-engine ValueJet plane is not operational if no engines are functioning. Therefore, let X be the number of functioning engines so that X is binomial $p=0.65, n=2$. Hence,

$$
P(X=0)=\frac{2!}{0!2!}(0.65)^{0}(0.35)^{2}=0.1225
$$

Thus, the probability the two-engine plane is operational is 0.8775 .
(b) The four-engine ValueJet plane is not operational if none or only one engine is functioning. Hence, let Y be binomial with $p=0.65, n=4$. Hence,

$$
P(Y=0)+P(Y=1)=\frac{4!}{0!4!}(0.65)^{0}(0.35)^{4}+\frac{4!}{1!3!}(0.65)^{1}(0.35)^{3}=0.0150+0.1115=0.1265 .
$$

Thus, the probability the two-engine plane is operational is 0.8735 .

Note that the two-engine plane is safer to operate.
3. (a) $S=\{R, G H, G T, Y H H, Y H T, Y T H, Y T T\}$ where R denotes a roll of red, G a roll of green, and Y a roll of yellow, H a head on the toss of the coin, and T a tail.
(b) $P(A)=P(R)=1 / 2$
(c) $P(B)=P(H H \mid Y) \cdot P(Y)=1 / 4 \cdot 1 / 6=1 / 24$
(d) Since $A \cap B=\emptyset, P(A \cap B)=0$. However, $P(A) \cdot P(B)=1 / 48 \neq 0$ so that A and B are NOT independent.
4. (a) Let D be the event that the plant is dead when you return, and let W be the event that your neighbor watered the plant.

$$
\begin{aligned}
P(D)=P(D \cap W)+P\left(D \cap W^{c}\right) & =P(D \mid W) \cdot P(W)+P\left(D \mid W^{c}\right) \cdot P\left(W^{c}\right) \\
& =0.15 * 0.90+0.80 * 0.10=0.215
\end{aligned}
$$

Hence the probability the plant is alive when you return is 0.785 .
(b) We seek $P\left(W^{c} \mid D\right)$ which can be computed via

$$
P\left(W^{c} \mid D\right)=\frac{P\left(D \mid W^{c}\right) \cdot P\left(W^{c}\right)}{P(D)}=\frac{0.80 * 0.10}{0.215}=0.372
$$

5. Let X be normally distributed with mean 12 and standard deviation 3 .
(a) $P(9 \leq X \leq 18)=P(-1 \leq Z \leq 2)=0.9772-0.1587=0.8185$ where Z is normal mean 1 SD 0 .
(b) If $0.20=P(X<L)=P\left(Z<\frac{L-12}{3}\right)$, then $(L-12) / 3=-0.84$ so that $L=9.48$.
(c) Let X_{1} and X_{2} be independent normal mean 12 SD 3 . Then the total precipitation is $X_{1}+X_{2}$ so that $E\left(X_{1}+X_{2}\right)=E\left(X_{1}\right)+E\left(X_{2}\right)=12+12=24$, and the variance of the total is $\operatorname{Var}\left(X_{1}+X_{2}\right)=\operatorname{Var}\left(X_{1}\right)+\operatorname{Var}\left(X_{2}\right)=9+9=18$ since X_{1} and X_{2} are independent. Thus, $\mathrm{SD}(X+Y)=\sqrt{18}=4.2426$.
6. Let X_{1} be 1 or 0 depending on whether the first coin gives you a head or tail, and let X_{2} be 1 or 0 depending on whether the second coin gives you a head or tail.
(a) The total number of heads is $X_{1}+X_{2}$ so that the expectation of the total number of heads is

$$
E\left(X_{1}+X_{2}\right)=E\left(X_{1}\right)+E\left(X_{2}\right)=0.6+0.3=0.9 .
$$

(b) The variance of the total number of heads is

$$
\operatorname{Var}\left(X_{1}+X_{2}\right)=\operatorname{Var}\left(X_{1}\right)+\operatorname{Var}\left(X_{2}\right)=0.6 * 0.4+0.3 * 0.7=0.45
$$

(c) The probability of getting exactly one head is

$$
0.6 * 0.7+0.4 * 0.3=0.54
$$

7. (a) Let \hat{p} be the distribution of the sample proportion. The approximate distribution of \hat{p} is normal with mean $p=0.14$ and standard deviation $\sqrt{p(1-p) / n}=\sqrt{0.14 * 0.86 / 500}=$ 0.0155 .
(b) Using a normal probability calculation (CLT calculation) gives

$$
P(\hat{p} \geq 0.15)=P\left(\frac{\hat{p}-0.14}{0.0155} \geq \frac{0.15-0.14}{0.0155}\right)=P(Z \geq 0.645)=1-0.74=0.26
$$

where Z is normal mean 0 SD 1 , so that our sample is 26% likely to contain at least 15% who own Harleys. It is up to you to judge if this constitutes "likely."

Note: This is problem 18.4 from Moore.

