Math 171.04 Spring 2004
February 23, 2004
Topics Covered for Prelim \#1

Course packet: 4.1, 4.2, 4.3, 4.4, 4.5

-sample space, events, probability
-union and intersection; complement; Venn diagrams
-properties of probability
-sum rule: $P(A \cup B)=P(A)+P(B)-P(A \cap B)$
-disjoint events: $A \cap B=\emptyset$, or equivalently, $P(A \cap B)=0$
-conditional probability: $P(A \cap B)=P(A \mid B) \cdot P(B)$ always
-Since $A \cap B=B \cap A$ we have the equivalence: $P(A \cap B)=P(A \mid B) \cdot P(B)$ and $P(B \cap A)=$ $P(B \mid A) \cdot P(A)$ so that

$$
P(A \mid B) \cdot P(B)=P(B \mid A) \cdot P(A)
$$

This is useful for finding one conditional probability when only the other conditional probability is given.
-independent events: A and B are independent if $P(A \mid B)=P(A)$, or equivalently, if $P(A \cap B)=$ $P(A) \cdot P(B)$

Course packet: 5.1, 5.2, 5.3, 5.4, 5.5

-random variables (discrete)
-distribution of random variable: listing of all possible probability assignments $P(X=i)$
-expected value $E(X)$: measures mean, or weighted average of a random variable. Know how to compute it: $E(X)=\sum_{i=1}^{n} x_{i} \cdot P\left(X=x_{i}\right)$.
-For any random variables, we have $E\left(X_{1}+X_{2}+\cdots+X_{n}\right)=E\left(X_{1}\right)+E\left(X_{2}\right)+\cdots+E\left(X_{n}\right)$, and for any constant c we have $E(c X)=c E(X)$ and $E(X+c)=E(X)+c$.
-variance $\operatorname{Var}(X)$: measure spread of a random variable. Know how to compute it: $\operatorname{Var}(X)=$ $E\left(X^{2}\right)-(E(X))^{2}$.
-We always have $\operatorname{Var}(c X)=c^{2} \operatorname{Var}(X)$ and $\operatorname{Var}(X+c)=\operatorname{Var}(X)$ for any constant c. If the random variables $X_{1}, X_{2}, \ldots, X_{n}$ are independent, then

$$
\operatorname{Var}\left(X_{1}+X_{2}+\cdots+X_{n}\right)=\operatorname{Var}\left(X_{1}\right)+\operatorname{Var}\left(X_{2}\right)+\cdots+\operatorname{Var}\left(X_{n}\right) .
$$

In particular, if X and Y are independent, then $\operatorname{Var}(X+Y)=\operatorname{Var}(X-Y)=\operatorname{Var}(X)+\operatorname{Var}(Y)$.
-Standard deviation is the square root of the variance. Hint: always compute with variances, and take square roots at the end of the problem. SD measures the expected deviation a random variable is from its mean.
-Bernoulli random variable: X is Bernoulli with parameter p if $P(X=1)=p$ and $P(X=0)=1-p$. A Bernoulli random variable counts a success on a single trial where there is probability p of success. Compute: $E(X)=p, \operatorname{Var}(X)=p(1-p)$.
-Binomial random variable: X is Binomial with parameters n and p if

$$
P(X=i)=\frac{n!}{i!(n-i)!} p^{i}(1-p)^{n-i} .
$$

Note, a binomial random variable counts the total number of successes in n independent trials where there is probability p of success on each trial. Compute: $E(X)=n p, \operatorname{Var}(X)=n p(1-p)$.

Normal random variables: Chapter 3

-If Z is normal with mean 1 and SD 0 , then corresponding probabilities can be computed by finding the area under the normal density curve. This is exactly what Table A in the textbook is for.
-If X is normal with mean μ and SD σ, then $\frac{X-\mu}{\sigma}$ is normally distributed with mean 1 and SD 0 . CONSEQUENCE: no matter what normal distribution you are given, you can find corresponding probabilities by normalizing (a.k.a. finding z-scores) and using the table.
-If Z is normal with mean 1 and $\operatorname{SD} 0$, then $X=\sigma Z+\mu$ is normal with mean μ and $\operatorname{SD} \sigma$. This is useful when reading the table backwards (a.k.a. finding inverse z-scores).
-If $X_{1}, X_{2}, \ldots, X_{n}$ are independent and identically distributed (iid) normal with mean μ and SD σ, then $\bar{X}=\frac{X_{1}+X_{2}+\cdots+X_{n}}{n}$ is normally distributed with mean μ and SD $\frac{\sigma}{\sqrt{n}}$. This is a special case of the central limit theorem.
-This fact is useful for computing probabilities associated with the sum of iid normal random variables.

Normal Approximation to the Binomial: Chapter 12 (pages 312-314)

-If X is binomial with parameters n, p, then $E(X)=n p$, and $\operatorname{Var}(X)=n p(1-p)$. As another special case of the central limit theorem, if n is large and p is not near 0 or 1 , then the distribution of X is approximately normal with mean $n p$ and $\mathrm{SD} \sqrt{n p(1-p)}$. This is useful for doing calculations because normal probabilities are easily computed from the table.
-Example: What is the probability of flipping exactly 47 heads on 100 tosses of a fair coin? (a) write out the exact solution using a binomial $n=100, p=1 / 2$ with 47 success. The problem is when you try to compute this. (b) find an approximate solution by finding the probability that a normal mean $100 \times 1 / 2, \mathrm{SD} \sqrt{100 \times 1 / 2 \times 1 / 2}$ is between 46.5 and 47.5.

Sample Proportions: Chapter 18 (pages 469-473)

-If \hat{p} is the observed proportion (sample proportion) of some characteristic, where there are n total trials and probability p of success on each trial, then the sampling distribution of \hat{p} is approximately normal with mean p and SD $\sqrt{\frac{p(1-p)}{n}}$.
-Again, this is useful for doing calculations from Table A.

