
Math 171.02 Spring 2004
February 23, 2004
Solutions to Practice Problems

Caveat: errors are possible.

1. Done in class

2. Let S be the event Anita gets an A in statistics, and let B be the event that she gets
an A in biology. Then, P (S) = 0.40, P (B) = 0.60, and P (S ∪B) = 0.86.

(a) The event that she does not receive an A in either statistics or biology is (S∪B)c. Thus,
P ((S ∪B)c) = 1− P (S ∪B) = 1− 0.86 = 0.14.

(b) From the addition law for probabilities we have P (S ∩B) = P (S)+P (B)−P (S ∪B) =
0.40 + 0.60− 0.86 = 0.14. Thus, the probability that she receives A’s in both statistics and
biology is 0.14 (as well).

3. We must solve the equation

1

2
= P (red first ∩ red second) = P (red first) · P (red second|red first) =

3

n
· 2

n− 1

which gives n = 4.

4. Let A be the event that the patient survives the operating table. We are told P (A) =
1 − 0.20 = 0.80. Let B be the event that the patient survives the aftereffects. We are told
that P (B|A) = 1−0.15 = 0.85. Hence, P (A∩B) = P (B|A) ·P (A) = 0.85×0.80 = 0.68.

5. (a) P (X = 0) = 121/144, P (X = 1) = 22/144, P (X = 2) = 1/144 and
P (Y = 0) = 1199/1428, P (Y = 1) = 220/1428, P (Y = 2) = 9/1428.

(b) E(X) = 24/144 and E(Y ) = 238/1428

(c) Var(X) = 22/144 and Var(Y ) = 649/4284

6. Note that P (at least 6 correct) = P (exactly 6) + P (exactly 7) + P (exactly 8) and
each of these probabilities can be computed since the experiment of flipping a coin 8 times
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and counting the number of heads is binomial with parameters n = 8, p = 1/2. Thus,

P (exactly 6)+P (exactly 7) + P (exactly 8)

=
8!

6!2!
(1/2)6(1/2)2 +

8!

7!1!
(1/2)7(1/2)1 +

8!

8!0!
(1/2)8(1/2)0

= (1/2)8 · (28 + 8 + 1)

=
37

256
.

Judge for yourselves if this is convincing evidence that he has ESP as claimed.

7. (a) P (f) = 1/5, P (k) = 1/4, P (f∪k) = 3/10. So P (f∩k) = 1/5+1/4−3/10 = 3/20.
Then P (k|f) = (3/20)/(1/5) = 3/4.

(b) P (f ′|k) = 1− P (f |k) = 1− (3/20)/(1/4) = 1− 3/5 = 2/5.

8. (a) 15/36 (b) 5/11

9. (a) 0.15 (b) 0.20

10. (a) 15/(15 + 35) = 30% (b) ≈ .138

11. No, P (E)P (F ) = 1/36 does not equal P (E ∩ F ) = 2/36.

12. (a) Let X be normal with mean 100 and SD 16. Then, P (X < 80) = P (Z <
(80−µ)/σ) = P (Z < (80− 100)/16) = P (Z < −1.25) ' 0.1056, where Z is normal mean 0,
SD 1, and the actual probability is from the table for the standard normal distribution.

(b) P (80 < X < 120) = P ((80 − 100)/16 < Z < (120 − 100)/16) = P (−1.25 < Z <
1.25) = P (Z < 1.25) − P (Z < −1.25) = (1 − P (Z > 1.25)) − P (Z < 1.25) = (1 − P (Z <
−1.25))− P (Z < −1.25) = 1− 2P (Z < −1.25) = 1− 2(0.1056) ' 0.7888. Note that, from
our work in part (a), no table is needed to solve this part.

(c) P (X > 140) = P (Z > (140− 100)/16) = P (Z > 2.5) = 1− P (Z < 2.5) ' 1− 0.9938 =
0.0062.

(d) If we consider selecting a child with an IQ higher than 80 as a success, this is just a
binomial probability with 5 trials, 4 successes, and probability of success 1−0.1056 = 0.8943.
So the probability is (

5

4

)
(0.8943)4(0.1056) ' 0.3377.
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13. There are many possible solutions here. A correct solution includes the following
elements: if the monkeys were truly choosing the balls that random, then the probability
that a given monkey selects the red ball is 1/3. Since there are 1000 monkeys, we expect
that 1000/3, or roughly 333, of them will correctly select the red ball.

However, there were 435 that selected the red ball. Thus, the question becomes: how likely
is observing 435 red balls from a binomial experiment of 1000 trials when the mean is 1000/3?

We can answer that question with the normal approximation. Suppose that X is a normally
distributed random variable with mean µ = np = 1000/3 ' 333.3 and standard deviation√

np(1− p) =
√

1000× 1/3× 2/3 ' 14.91. Then, the chance of observing at least 435
monkeys correctly picking the red ball if they were truly choosing randomly is

P (X ≥ 435) = P (Z ≥ 435− 333.3

14.91
) = P (Z ≥ 6.82).

Notice that the z-score 6.82 is not even on Table A. This is becuase this probability is too
close to zero to be registered. (Recall that 99.7% of normally distributed data lie within
3 standard deviations of the mean. Thus, less than 0.3% or 0.003 lie outside 3 standard
deviations of the mean.)

From the TI-83 we can calculate that

P (Z ≥ 6.82) ' 4.58× 10−12 = 0.00000000000458.

Thus, the chance of 435 monkeys randomly picking the red ball is extremely rare. Thus,
there is sufficient evidence based only on this data that Prof. Frink’s monkeys are intelligent.
Hear Prof. Frink himself at:

http://www.math.cornell.edu/∼kozdron/Teaching/Cornell/171Spring04/frink.wav

14. (a) For the secret agent to live until Wednesday, he needs to live to Friday, then
Saturday, then Sunday, then Monday, then Tuesday, then Wednesday. The probability of
each of these happening is 0.49. Since we want the probability of all of them happening (i.e.,
their intersection), the answer is (0.49)6 ' 0.014.

(b) The probability of any one of the secret agents being alive on Saturday is (0.49)2 ' 0.24.
This is a binomial distribution, so the expected number of successes (the secret agent living
is considered a success) is just the probability of success times the number of trials (i.e.,
number of secret agents). So the answer is (0.24)(12) = 2.88.
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15. (a) Write the values in order: 150, 180, 190, 230, 250, 250, 280, 300, 340, 380. The
median is just the mean of the two middle numbers. Since these two numbers are both 250,
the median is 250. The mean is a simple calculation: (150 + 180 + 190 + 230 + 250 + 250 +
280 + 300 + 340 + 380)/10 = 255. The standard deviation is calculated just as easily:√

697300− 10(2552)

9
' 72.

(b) The Bright Idea Lighting Company’s bulbs have a higher mean life.

(c) For the Bright Idea Lighting Company, we have P ′(x > 350) = P (z > (350−262)/41) =
P (z > 2.15) = 1− P (z < 2.15) = 1− 0.9842 = 0.0158. For The Electric Company,

P ′(z > 350) = P (z >
350− 255

72
) = P (z > 1.32) = 1− P (z < 1.32) = 1− 0.9066 = 0.0934.

16. P (−z∗ < z < z∗) = 1 − 2P (z < −z∗). This can be seen clearly from a picture of
the standard normal distribution. Now P (−z∗ < z < z∗) = .95 ⇒ 1−2P (z < −z∗) = .95 ⇒
2P (z < −z∗) = .05 ⇒ P (z < −z∗) = .025. Looking at a table, we see that −z∗ is −2.81,
and so z∗ = 2.81.

17. (a) Each family is an independent trial. We want the expected number of the
72,069 families that have 3 girls. Thus, a success is “having 3 girls.” If the probability of
having 3 girls in one 6-child family is q, then the expected number of families with 3 girls is
nq = 72, 069q. We must now compute q.

In each family, q is the probability of having exactly 3 girls. Thus, having 3 successes in 6
trials is a binomial n = 6, p = 1/2 experiment. This is q = 6!

3!3!
(1/2)3(1/2)3 = 5/16.

Finally, the expected number of 6-child families with 3 girls is 72, 069×5/16 = 22, 521.5625 ≈
22, 522.

(b) The sampling distribution for X is simply the observed frequencies of girls.

P (X = 0) = 1, 096/72, 069 = 0.015
P (X = 1) = 6, 233/72, 069 = 0.087
P (X = 2) = 15, 700/72, 069 = 0.218
P (X = 3) = 22, 221/72, 069 = 0.308
P (X = 4) = 17, 332/72, 069 = 0.240
P (X = 5) = 7, 908/72, 069 = 0.110
P (X = 6) = 1, 579/72, 069 = 0.022
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(c) E(X) = 0 · P (X = 0) + 1 · P (X = 1) + 2 · P (X = 2) + 3 · P (X = 3) + 4 · P (X =
4) + 5 · P (X = 5) + 6 · P (X = 6) = 3.09.

(d) This question is poorly worded. Basically, the question asks you to compare how close
the observed expected number of girls in a 6-child family (namely 3.09) is to the theoretical
binomial(n = 6, p = 1/2) value (namely 3).

Equivalently, the binomial model predicts that there should be 22, 522 6-child families with
3 girls, while the observed value was 22, 221.

It is up to you to decide if these are “close enough.”

(e) Since X+Y = 6 always (there are 6 children in each family), we have E(Y ) = 6−E(X) =
2.91.
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