Solution for Homework 11

Extra Problem Sheet:
9 (a) $\mathrm{X}=$ amount of cereal in the small bowl
$\mathrm{Y}=$ amount of cereal in the large bowl
$\mathrm{T}=\mathrm{X}+\mathrm{Y}$ (total amount)
$\mathrm{E}(\mathrm{T})=4.0$ and $\mathrm{SD}(\mathrm{T})=0.5$.
$\mathrm{P}(\mathrm{T}>4.5)=\mathrm{P}(\mathrm{Z}>1)=0.1587$
(b) $\mathrm{D}=\mathrm{Y}-\mathrm{X}$ (difference)
$\mathrm{E}(\mathrm{D})=1$ and $\mathrm{SD}(\mathrm{D})=0.5$
$P(D<0)=P(Z<-2)=0.0228$
10 (Note: The R.V. D in this problem is different from the one in the previous problem.)
$\mathrm{E}(\mathrm{D})=1$ and $\mathrm{SD}(\mathrm{D})=0.2408$
$\mathrm{P}(\mathrm{D}>0.5) \approx \mathrm{P}(\mathrm{Z}>-2.076)=0.9812$
$11 \mathrm{X}=\mathrm{CU}$ student's IQ
Y = Nameless U student's IQ
$\mathrm{D}=\mathrm{X}-\mathrm{Y}$ (difference)
$\mathrm{E}(\mathrm{D})=10$ and $\mathrm{SD}(\mathrm{D}) \approx 15.62$
$P(D>5) \approx P(Z>-0.32)=0.6255$
12 (Note: The R.V. D in this problem is different from the one in the previous problem.)
(a) $\mathrm{E}(\mathrm{D})=10$ and $\mathrm{SD}(\mathrm{D}) \approx 8.246$
(b) $\mathrm{P}(\mathrm{D}>5) \approx \mathrm{P}(\mathrm{Z}>-0.6063) \approx 0.7291$
18.4 (a) The distribution is approximately normal with mean 0.14 and standard deviation 0.0155 .
(b) 20% or more Harley owners is unlikely: $\mathrm{P}(\hat{p}>0.20) \approx \mathrm{P}(\mathrm{Z}>3.87)<0.0002$. There is a fairly good chance of finding at least 15% Harley owners: $\mathrm{P}(\hat{p}>0.15) \approx \mathrm{P}(\mathrm{Z}>0.64)<0.2611$.
18.6 The population is too small.
18.8 There were only 5 or 6 "successes" in the sample (because $5 / 2673$ and $6 / 2673$ both round to 0.2%).
18.11 (a) The methods can be used here because we assume we have a large SRS from a much larger population.
(b) $\hat{p}=692 / 1048 \approx 0.6603$, and the 95% confidence interval is 0.632 to 0.689 .
(c) The margin of error for a 95% confidence interval ("19 cases out of 20 ") was (slightly less than) 3%.
18.28 (a) We find $\hat{p} \approx 0.5397$, so the 95% confidence interval is $0.5397 \pm 0.0306=0.5090$ to 0.5703 , and \tilde{p} $=0.5396$, so the plus four interval is $0.5396 \pm 0.0305=0.5090$ to 0.5701 . By either the standard or the plus four method, the margin of error is roughly 3%.
(b) We were not given sample sizes for each gender. (However, by solving the system $\mathrm{x}+\mathrm{y}=1019$ and $0.65 \mathrm{x}+0.43 \mathrm{y}=550$: approximately 508 men and 511 women.)
(c) The margin of error for women alone would be greater than 0.03 because the sample size is smaller.
18.31 We find $\hat{p}=0.4202$, so the 99% confidence interval is $0.4202 \pm 0.0301 \approx 0.3901$ to 0.4503 , and the plus four interval is $0.4203 \pm 0.0301 \approx 0.3903$ to 0.4504 .
18.32 For testing $\mathrm{H}_{0}: \mathrm{p}=0.5$ vs. Ha: $\mathrm{p}<0.5$, we have $\mathrm{z} \approx-6.75$. This gives $\mathrm{P}<0.0002$ - very strong evidence that less than half the population attended church or synagogue in the preceding week. Additionally the intervals from the previous exercise do not include 0.50 or more.
$18.33 \mathrm{n}=(2.576 / 0.01)^{\wedge} 2^{*}(0.5)^{*}(0.5) \approx 16589.4-$ use $\mathrm{n}=16590$. The use of $p^{\square}=0.5$ is reasonable because our confidence interval shows that the actual p is in the range 0.3 to 0.7 , so that this conservative approach will not greatly inflate the sample size.
19.11 We find $\hat{p}_{1} \approx 0.7105$ and $\hat{p}_{2} \approx 0.5700, \mathrm{SE} \approx 0.0395$, and so the 95% confidence interval is $\hat{p}_{1}-\hat{p}_{2} \pm$ $1.96 \mathrm{SE}=0.1405 \pm 0.0774 \approx 0.0631$ to 0.2179 . Using the plus four method: $\tilde{p}_{1} \approx 0.7083$ and $\tilde{p}_{2} \approx 0.5698, \mathrm{SE}$ ≈ 0.0394, so the interval is $\tilde{p}_{1}-\tilde{p}_{2} \pm 1.96 \mathrm{SE}=0.1386 \pm 0.0772 \approx 0.0614$ to 0.2158 .
19.20 (a) To test $\mathrm{H}_{0}: p_{1}=p_{2}$ vs. Ha: $p_{1} \neq p_{2}$, we find $\hat{p}_{1}=52 / 65=0.8$ and $\hat{p}_{2}=30 / 55 \approx 0.5455$, and $\hat{p}=$ $(52+30) /(65+55) \approx 0.6833$. Then $\mathrm{SE} \approx 0.08523$, so $\mathrm{z}=\left(\hat{p}_{1}-\hat{p}_{2}\right) / \mathrm{SE} \approx 2.99$. This gives $\mathrm{P}=0.0028$-- strong evidence that there is a difference (specifically, that urban/suburban students are more likely to succeed).
(b) For a confidence interval, $\mathrm{SE} \approx 0.08348$, so the 90% confidence interval for $p_{1}-p_{2}$ is $\left(\hat{p}_{1}-\hat{p}_{2}\right) \pm$ $1.645 * \mathrm{SE}=0.2545 \pm 0.1373 \approx 0.1172$ to 0.3919 . Using the plus four method, the interval is 0.1113 to 0.3930 .
19.23 (a) $\hat{p}_{1} \approx 0.2137, \hat{p}_{2} \approx 0.4149$ and $\mathrm{SE} \approx 0.014995$, the 99% confidence interval is $\left(\hat{p}_{1}-\hat{p}_{2}\right) \pm 2.576 * \mathrm{SE} \approx$ 0.1626 to 0.2398 . Using the plus four method, the interval is 0.1623 to 0.2395 .
(b) Because the 99% confidence interval for the difference does not include 0 , the P -value against the two-sided alternative will be smaller than 0.01 .
(c) The count of other types of nonresponse from January to April was $491-333=158$, so $\hat{p}_{1} \approx$ 0.1014 ; in July and August, the count was $1174-861=313$, so $\hat{p}_{2} \approx 0.1508$. For testing H0: $p_{1}=p_{2}$ vs. Ha: $p_{1} \neq p_{2}$, we have $\hat{p}=(158+313) /(1558+2075) \approx 0.1296$ and $\mathrm{SE} \approx 0.01126$, so $\mathrm{z}=\left(\hat{p}_{1}-\hat{p}_{2}\right) / \mathrm{SE} \approx-4.39$. This gives $\mathrm{P}<0.0004$-- very strong evidence that other nonresponse rates also differ between the seasons.

