Solutions of homework 10

16.3 (a) $t^{\square}=2.015$.
(b) $t^{\square}=2.518$.
16.9 (a) $\mathrm{df}=24$.
(b) $\mathrm{t}=1.12$ is between $1.059(\mathrm{p}=0.15)$ and $1.318(\mathrm{p}=0.10)$.
(c) Double the value of P because Ha is two-sided: The P -value is between 0.30and 0.20.
(d) $\mathrm{t}=1.12$ is not significant at either $\alpha=0.10$ or $\alpha=0.05$.
16.11 (a) For each subject, randomly select which knob that subject should use first.
(b) H_{0} : $ل=0 \mathrm{sec}$ vs. Ha: $ل<0 \mathrm{sec}$, where \downarrow is the mean of (right-thread time - left-thread time).
(c) $\bar{x}=-13.32 \mathrm{sec} ; \mathrm{s} / \sqrt{25}=22.94 / \sqrt{25} \approx 4.59 \mathrm{sec}$, so $\mathrm{t}=-2.90$. With $\mathrm{df}=24$, we see that $0.0025<\mathrm{P}$ $<0.005(\mathrm{P}=0.0039)$. We have good evidence that the mean difference really is negative; i.e., the mean time for right-threaded knobs is less than the mean time for left-threaded knobs.
16.12 (a) \downarrow is the mean difference in the returns (Vanguard minus managed fund).
(b) H_{0} : $ل=0$ vs. Ha: $\downarrow>0$.
(c) With $\bar{x}=2.83 \%, \mathrm{~s}=11.65 \%$ and $\mathrm{df}=23$, we have $\mathrm{t} \approx 1.19$, so $0.10<\mathrm{P}<0.15(\mathrm{P}=0.123)$. The difference is not significant; it could have arisen by chance.
16.13 With $\mathrm{df}=24, t^{\square}=1.711$, the interval for U is approximately -21.2 to -5.5 sec . We have $\bar{x}_{\mathrm{RH}}=104.12$ and $\bar{x}_{\text {LH }}=117.44$, so that $\bar{x}_{\text {RH }} / \bar{x}_{\text {LH }}=88.7 \%$. Right-handers working with right-handed knobs can accomplish the task in about 90% of the time needed by those working with left-handed knobs.
17.11 (a) The two populations are breast-feeding women and other women.
(b) Stemplots are omitted; both distributions appear to be reasonable Normal.
(c) To test H_{0} : $\downarrow=0$ vs. Ha: $\downarrow>0$, we compute $\mathrm{SE} \approx 0.45847$ and $\mathrm{t} \approx 8.50$. The choice df (21 or 66.20) is irrelevant; P is tiny in either case, so we have strong evidence that nursing mothers lose bone mineral.
17.24 (a) To test H_{0} : $\sqcup_{\mathrm{m}}=\sqcup_{\mathrm{f}}$ vs. Ha: $\sqcup_{\mathrm{m}}>\mathrm{U}_{\mathrm{f}}$, we compute $\mathrm{SE} \approx 0.132148$ and $\mathrm{t} \approx 6.13$. For either choice of df (595 or 977.68), the P - value is tiny, and we conclude that the male mean is higher.
(b) The sample contracted only people with telephones. Persons without phones are typically poorer, and may have road-rage characteristics different from the rest of the population.
17.25 We find $\mathrm{SE} \approx 12.2065 \mathrm{~g}$. the 90% confidence interval is $(59-32) \pm t^{\square} \mathrm{SE}$, where t^{d} is either 1.860 (df $=8)$ or $1.7392(\mathrm{df}=17.076)$. These lead (respectively) to the intervals 4.301 to 49.677 g , or 5.771 to 48.229 g. Because these intervals do not include 0 , we can conclude that there is a significant difference at the twosided 10% interval. (In fact, $\mathrm{P}=0.0578$ for $\mathrm{df}=8$ or 0.0409 for $\mathrm{df}=17.076$).
17.41 (a) The appropriate test is the matched pairs test because a student's score on Try 1 is certainly correlated with his/her score on Try 2.
(b) To test H_{0} : $\downarrow=0$ vs. Ha: $\sqcup>0$, we compute $\mathrm{t} \approx 10.16$ with 426 degrees of freedom, which is certainly significant ($\mathrm{P}<0.0005$). Coached student do improve their scores.
(c) Table C gives $t^{\square}=2.626$ for $\mathrm{df}=100$. The confidence interval is $29 \pm t^{0} 59 / \sqrt{427}=21.50$ to 36.50 points.
17.42 (a) The hypotheses are H_{0} : $\sqcup_{1}=\sqcup_{2}$ vs. Ha: $\sqcup_{1}>\sqcup_{2}$, where \sqcup_{1} is the mean gain among all coached students, and U_{2} the mean gain among all uncoached students. We find $\mathrm{SE} \approx 3.0235$ and $\mathrm{t} \approx 2.646$ with $\mathrm{df}=$ 426. Comparing with $\mathrm{df}=100$ critical values in Table C , we find $0.0025<\mathrm{P}<0.005$. There is evidence that coached students had a great average increase.
(b) The 99% confidence interval is $8 \pm 3.0235 t^{\square}$, where t^{\square} equals 2.626 . This gives 0.06 to 15.94 points.
(c) Increasing one's score by 0 to 16 points is not likely to make a difference in being granted admission to, or receiving scholarships from, any colleges.

