Solutions of homework 9

14.2 (a) If $\sqcup=115$, the distribution is approximately Normal with mean $\sqcup=115$ and standard deviation σ / $\sqrt{25}=6$.
(b) The actual result lies out toward the high tail of the curve, while 118.6 is fairly close to the middle. If $\sqcup=115$, observing a value similar to 118.6 would not be too surprising, but 125.7 is less likely, and it therefore provides some evidence that $U>115$.
14.6 H_{0} : $\sqcup=5 \mathrm{~mm}$; Ha: $\amalg \neq 5 \mathrm{~mm}$. \sqcup is the mean diameter of all spindles, while \bar{x} is the mean diameter of only those spindles in our sample.
14.22 (a) $\mathrm{z} \approx-2.20$.
(b) This result is significant at the 5% level because $\mathrm{z}<-1.960$.
(c) It is not significant at 1% because $\mathrm{z}>=-2.576$.
(d) The absolute value of this value of z is between 2.054 and 2.236 , so the P -value is between 0.02 and 0.04 (because the alternative is two-sided).
14.24 (a) Yes: $\mathrm{P}=0.06$ indicates that the result observed are not significant at the 5% level, so the 95% confidence level will include 10.
(b) No: Because $\mathrm{P}<0.1$, we can reject H_{0} : $~=10$ at the 10% level. The 90% confidence interval would include only those values k for which we could not reject $\quad \mathrm{H}_{0}$: $~=\mathrm{k}$ at the 10% level.
14.27 Our hypotheses are $\mathrm{H}_{0}: ~ \sqcup=100$; Ha: $\sqcup \neq 100$. We have known that $\bar{x}=105.84$, so the test statistic is $\mathrm{z} \approx 2.17$, and the P -value is $\mathrm{P}=2 \mathrm{P}(\mathrm{Z}>2.17)=0.0300$. This is strong evidence (significant at the 5% level) that the mean IQ differs from (is greater than) 100 .
14.28 Our hypotheses are $\mathrm{H}_{0} \mathrm{U}=25 \sqcup \mathrm{~g} / \mathrm{l}$; Ha: $\amalg>25 \sqcup \mathrm{~g} / \mathrm{l}$. We have known that $\bar{x}=30.4 \mathrm{~d} / \mathrm{l}$, so the test statistic is $\mathrm{Z} \approx 2.44$, and the P -value is $\mathrm{P}=\mathrm{P}(\mathrm{Z}>2.44)=0.0073$. This is strong evidence against H_{0}; we conclude that the student's mean threshold is greater than $255^{\mathrm{L}} \mathrm{g} / \mathrm{l}$.
15.5 (a) $\mathrm{z}=1.64<1.645-$ not significant at 5% level $(\mathrm{P}=0.0505)$.
(b) $\mathrm{z}=1.65>1.645-$ significant at 5% level $(\mathrm{P}=0.0495)$.
15.14 (a) Reject H_{0} if $\mathrm{z}<-2.236$.
(b) The probability of making a Type I error is 0.01 (α, the significant level).
(c) We accept H_{0} if $\mathrm{z}>=-2.236$, which corresponds to $\bar{x}>=270.185$. Then

P (Type II error
when $ل=270)=\mathrm{P}(\bar{x}>=270.185$ given $ل=270) \approx \mathrm{P}(\mathrm{Z}>=0.09)=0.4641$.
15.31 (a) $|z|>=2.576$ is equivalent to $\mathrm{z}\left\langle=-2.576\right.$ or $\mathrm{z}>=2.576$, so we reject H_{0} if $\bar{x}\langle=0.84989$ or $\bar{x}>=$ 0.87011. In other words, we reject H_{0} if \bar{x} is not between 0.84989 and 0.87011 .
(b) The power against $\mathrm{J}=0.845$ is approximately $1-\mathrm{P}(1.25<\mathrm{Z}<6.40) \approx 0.8944$.
(c) $\mathrm{P}($ Type II error $)=1-$ Power $=0.1056$.

