Solutions of homework 9

14.2 (a) If $\parallel = 115$, the distribution is approximately Normal with mean $\parallel = 115$ and standard deviation $\sigma/\sqrt{25} = 6$.

(b) The actual result lies out toward the high tail of the curve, while 118.6 is fairly close to the middle. If $\parallel = 115$, observing a value similar to 118.6 would not be too surprising, but 125.7 is less likely, and it therefore provides some evidence that $\parallel > 115$.

14.6 H₀: $\square = 5$ mm; Ha: $\square \neq 5$ mm. \square is the mean diameter of all spindles, while \overline{x} is the mean diameter of only those spindles in our sample.

14.22 (a) $z \approx -2.20$.

(b) This result is significant at the 5% level because z < -1.960.

(c) It is not significant at 1% because $z \ge -2.576$.

(d) The absolute value of this value of z is between 2.054 and 2.236, so the P-value is between 0.02 and 0.04 (because the alternative is two-sided).

14.24 (a) Yes: P = 0.06 indicates that the result observed are not significant at the 5% level, so the 95% confidence level will include 10.

(b) No: Because P < 0.1, we can reject H_0 : U = 10 at the 10% level. The 90% confidence interval would include only those values k for which we could not reject H_0 : U = k at the 10% level.

14.27 Our hypotheses are H₀: $\parallel = 100$; Ha: $\parallel \neq 100$. We have known that $\overline{x} = 105.84$, so the test statistic is $z \approx 2.17$, and the P-value is P = 2P(Z > 2.17) = 0.0300. This is strong evidence (significant at the 5% level) that the mean IQ differs from (is greater than) 100.

14.28 Our hypotheses are H₀: $\square = 25 \square$ g/l; Ha: $\square > 25 \square$ g/l. We have known that $\overline{x} = 30.4 \square$ g/l, so the test statistic is $z \approx 2.44$, and the P-value is P = P (Z > 2.44) = 0.0073. This is strong evidence against H₀; we conclude that the student's mean threshold is greater than $25 \square$ g/l.

15.5 (a) z = 1.64 < 1.645 -- not significant at 5% level (P = 0.0505). (b) z = 1.65 > 1.645 -- significant at 5% level (P = 0.0495).

15.14 (a) Reject H₀ if z < -2.236.

(b) The probability of making a Type I error is 0.01 (α , the significant level).

(c) We accept H₀ if $z \ge -2.236$, which corresponds to $\bar{x} \ge 270.185$. Then P (Type II error when $\parallel = 270$) = P ($\bar{x} \ge 270.185$ given $\parallel = 270$) \approx P ($Z \ge 0.09$) = 0.4641.

15.31 (a) $|z| \ge 2.576$ is equivalent to $z \le -2.576$ or $z \ge 2.576$, so we reject H₀ if $\overline{x} \le 0.84989$ or $\overline{x} \ge 0.87011$. In other words, we reject H₀ if \overline{x} is not between 0.84989 and 0.87011.

(b) The power against $\parallel = 0.845$ is approximately $1 - P(1.25 < Z < 6.40) \approx 0.8944$.

(c) P (Type II error) = 1 - Power = 0.1056.