Solutions of homework 8

10.19. In the long run, the gambler earns an average of 94.7 cents per bet. In other words, the gambler loses (and the house gains) 5.3 cents for each $\$ 1$ bet.
10.22. (a) Normal with mean 123 mg and standard deviation $\sigma / \sqrt{3} \approx 0.0462 \mathrm{mg}$.
(b) $\mathrm{P}(\mathrm{X} \geq 124 \mathrm{mg})=\mathrm{P}\left(\mathrm{Z} \geq \frac{124 \square 123}{\square / \sqrt{3}}\right)=\mathrm{P}(\mathrm{Z} \geq 21.65)-$ essentially 0 .
10.27. (a) \bar{x} is approximately $\mathrm{N}(2.2,1.4 / \sqrt{52})=\mathrm{N}(2.2$ accidents, 0.1941 accidents $)$.
(b) $\mathrm{P}(\bar{x}<2) \approx \mathrm{P}(\mathrm{Z}<-1.03)=0.1515$.
(c) Let A be the number of accidents in a year.

$$
\mathrm{P}(\mathrm{~A}<100)=\mathrm{P}(\bar{x}<100 / 52) \approx \mathrm{P}(\mathrm{Z}<-1.43)=0.0764 .
$$

Alternatively, we might use the continuity correction that adjusts for the fact that counts must be whole numbers. The alternative answer is 0.0694 .
13.2. No: The interval refers to the mean NAEP score, not to individual scores, which will be much more variable (indeed, if more than 95% of young men score below 276.2, then very few can, for example, determine the price of a meal from a menu).
13.3. (a) The standard deviation of \bar{x} is $\sigma / \sqrt{1000} \approx 1.8974$.
(b) Omitted.
(c) $\mathrm{m}=2^{*} 1.8974 \approx 3.8$ (or " ± 3.8 ")
(d) The confidence interval drawn may vary, but they should be $2 \mathrm{~m}=7.6$ units wide
(e) 95%
13.9. (a) (b) \& (c) $\mathrm{n}=1000$: CI 18.9 to 25.1 points; margin of error: 3.1
$\mathrm{n}=250:$ CI 15.8 to 28.2 points; margin of error: 6.2
$\mathrm{n}=4000:$ CI 20.45 to 23.55 points; margin of error: 1.55
(d) The margin of error decreases with large samples (by a factor of $1 / \sqrt{n}$).
13.10. (a) The 98% confidence interval is $10.0023 \pm(2.326 * 0.0002 / \sqrt{5})=10.0021$ to 10.0025 grams.
(b) $\mathrm{n}=(2.326 * 0.0002 / 0.0001)^{\wedge} 2 \approx 21.64$. Take $\mathrm{n}=22$.

