Math 135 (Summer 2006)
Shift Ciphers and Modular Arithmetic
Example: Find the values of the function $f(x)=(x+3)$ MOD 7 on the domain $\{0,1,2,3,4,5,6\}$. (Compare this with problem 5 in $\S 2.1$.) Find a formula for f^{-1}.

Solution: We see that f is given by

$$
\begin{array}{c|ccccccc}
x & 0 & 1 & 2 & 3 & 4 & 5 & 6 \\
\hline f(x) & 3 & 4 & 5 & 6 & 0 & 1 & 2
\end{array}
$$

As for f^{-1}, we observe that $0 \mapsto 4,1 \mapsto 5, \ldots, 3 \mapsto 0$, etc., so that

$$
f^{-1}(y)=(y+4) \operatorname{MOD} 7 .
$$

Notice that it is equivalent to write $f^{-1}(y)=(y-3)$ MOD 7 .
We can use modular arithmetic to help "automate" the process of enciphering and deciphering Caesartype $+k$ shift ciphers. Begin by writing down the numerical equivalents of the letters as follows:

A	B	C	D	E	F	G	H	I	J	K	L	M
0	1	2	3	4	5	6	7	8	9	10	11	12
N	0	P	Q	R	S	T	U	V	W	X	Y	Z
13	14	15	16	17	18	19	20	21	22	23	24	25

If x denotes the plaintext numerical equivalent of a string, then a shift of $+k$ letters can be computed as

$$
E_{k}(x)=(x+k) \text { MOD } 26
$$

and if y denotes the ciphertext numerical equivalent, then the decipherment function (which is a shift by $-k$) is given by

$$
D_{k}(y)=(y-k) \operatorname{MOD} 26 .
$$

(As an aside, note that $D_{k}(y)=E_{k}^{-1}(y)=E_{-k}(y)$.)
Example: key $k=7$; plaintext $=$ THURSDAY; find the ciphertext
Solution: Using the letters-to-numerical equivalents chart above, we find

plaintext	T	H	U	R	S	D	A	Y
x	19	7	20	17	18	3	0	24
$x+7$	26	14	27	24	25	10	7	31
$(x+7)$ MOD 26	0	14	1	24	25	10	7	5
ciphertext	A	O	B	Y	Z	K	H	F

Example: key $k=11$; ciphertext $=$ QCTOLJ; find the plaintext

Solution: Using the letters-to-numerical equivalents chart above, we find

ciphertext	Q	C	T	O	L	J
y	16	2	19	14	11	9
$y-11$	5	-9	8	3	0	-2
$(y-11)$ MOD 26	5	17	8	3	0	24
plaintext	F	R	I	D	A	Y

