Math 135 (Summer 2006)
Bézout's identity
Recall the following theorem which we discussed in class.
Theorem: If a and b are positive integers, then there exist integers s and t such that $a s+b t=d$ where $d=\operatorname{gcd}(a, b)$ is the greatest common divisor of a and b.

This theorem is sometimes called Bézout's identity after the French mathematician Étienne Bézout (1730-1783), and gives an example of a linear Diophantine equation. (In a Diophantine equation, only integer solutions are allowed.)

For a given a, b, the extended Euclidean algorithm produces one pair of integers s, t for which $a s+b t=\operatorname{gcd}(a, b)$.

However, there are infinitely many integral solutions! In fact, let $s^{\prime}=s-k b$ and let $t^{\prime}=t+k a$ where k is an integer. Then,

$$
a s^{\prime}+b t^{\prime}=a(s-k b)+b(t+k a)=a s-a k b+b t+b k a=a s+b t=d .
$$

For example, the greatest common divisor of $a=12$ and $b=42$ is $\operatorname{gcd}(12,42)=6$. Therefore, by Bézout's identity, there exist s and t such that

$$
12 s+42 t=6 .
$$

Using the extended Euclidean algorithm (it only takes one step), we find

$$
-3 \cdot 12+1 \cdot 42=6
$$

That is, $s=-3$ and $t=1$. However, one can check that $s^{\prime}=-3-42 k, t^{\prime}=1+12 k$ for integers k also work:

$k=$	$s^{\prime}=$	$t^{\prime}=$	$12 s^{\prime}+42 t^{\prime}$
-2	81	-23	$972-966$
-1	39	-11	$468-462$
0	-3	1	$-36+42$
1	-45	13	$-540+546$
2	-87	25	$-1044+1050$

In fact, other solutions can be found, which in turn generate another infinite family of solutions. For instance,

$$
4 \cdot 12-1 \cdot 42=6
$$

so the generated solutions are

$k=$	$s^{\prime}=$	$t^{\prime}=$	$12 s^{\prime}+42 t^{\prime}$
-2	88	-25	$1056-1050$
-1	46	-13	$552-546$
0	4	-1	$48-42$
1	-38	11	$-456+462$
2	-80	23	$-960+966$

