Math 111 Prelim \#2 Solutions - July 21, 2003
1.
(a) $f^{\prime}(x)=e^{x} \cos \left(e^{x}-1\right)-\frac{x}{\sqrt{x^{2}+1}}$
(b) $f(x)=\frac{x}{2} \ln (x)$, so $f^{\prime}(x)=\frac{1}{2} \ln x+\frac{1}{2}$.
(c) $f^{\prime}(x)=0$ since $e^{\pi}-\pi^{e}$ is a constant.
(d) $f^{\prime}(x)=\frac{2^{x} \sec ^{2} x-2^{x} \ln 2 \tan x}{2^{2 x}}=\frac{\sec ^{2} x-\ln 2 \tan x}{2^{x}}$
2.
(a) We can use the chain rule to compute the required derivatives. Thus,

$$
\frac{d x}{d t}=4 \cdot 3 \cos ^{2} t \cdot(-\sin t)=-12 \sin t \cos ^{2} t
$$

and

$$
\frac{d y}{d t}=4 \cdot 3 \sin ^{2} t \cdot \cos t=12 \cos t \sin ^{2} t
$$

(b) We can also use the chain rule to determine $\frac{d y}{d x}$. Since

$$
\frac{d y}{d t}=\frac{d y}{d x} \frac{d x}{d t}
$$

we can isolate $\frac{d y}{d x}$ so that

$$
\frac{d y}{d x}=\frac{12 \cos t \sin ^{2} t}{-12 \sin t \cos ^{2} t}=-\frac{\cos t \sin ^{2} t}{\sin t \cos ^{2} t}
$$

Thus, when $t=\pi / 4, \sin (\pi / 4)=\cos (\pi / 4)=1 / \sqrt{2}$ so that $\frac{d y}{d x}=-1$.
(c) It is tempting to write that

$$
\frac{d y}{d x}=-\frac{\cos t \sin ^{2} t}{\sin t \cos ^{2} t}=-\frac{\sin t}{\cos t} .
$$

However, this is not immediately true FOR ALL t, since we must check that we are not dividing by 0 . In order to justify this step, we must compute the limits as t approaches
the values where the denominator is 0 . Thus, if $t=k \pi$ for $k \in \mathbb{Z}$ so that $\sin t=0$, then

$$
\lim _{t \rightarrow k \pi} \frac{\cos t \sin ^{2} t}{\sin t \cos ^{2} t}=\lim _{t \rightarrow k \pi} \frac{\sin t}{\cos t}=0
$$

Further, if $t=k \pi+\pi / 2$ for $k \in \mathbb{Z}$ so that $\cos t=0$, then

$$
\lim _{t \rightarrow k \pi+\pi / 2} \frac{\cos t \sin ^{2} t}{\sin t \cos ^{2} t}=\lim _{t \rightarrow k \pi+\pi / 2} \frac{\sin t}{\cos t} \quad \text { DNE. }
$$

Thus, we see that $\frac{d y}{d x}$ does not exist when $\cos t=0$. There are two values of t with $0 \leq t \leq 2 \pi$ for which this is true: $t=\pi / 2$ and $t=3 \pi / 2$.

The value $t=\pi / 2$ corresponds to the point $\left(4 \cos ^{3}(\pi / 2), 4 \sin ^{3}(\pi / 2)\right)=(0,4)$.

The value $t=3 \pi / 2$ corresponds to the point $\left(4 \cos ^{3}(3 \pi / 2), 4 \sin ^{3}(3 \pi / 2)\right)=(0,-4)$.

Note carefully the wording on page 231 of Stewart.
3. Let x be the distance traveled by Titanic in t hours; let y be the distance traveled by iceberg in t hours; and let z be the distance between Titanic and iceberg after t hours. We know that $\frac{d x}{d t}=35 \mathrm{~km} / \mathrm{h}$ and $\frac{d y}{d t}=25 \mathrm{~km} / \mathrm{h}$. Thus, we must find $\frac{d z}{d t}$ when $t=4$. These quantities are related by

$$
(x+y)^{2}+100^{2}=z^{2} .
$$

Taking derivatives with respect to time gives

$$
\begin{gathered}
2(x+y)\left(\frac{d x}{d t}+\frac{d y}{d t}\right)+0=2 z \cdot \frac{d z}{d t} \\
\frac{d z}{d t}=\frac{(x+y)\left(\frac{d x}{d t}+\frac{d y}{d t}\right)}{z} .
\end{gathered}
$$

Now, when $t=4, x=35 \cdot 4=140, y=25 \cdot 4=100$, and $z=\sqrt{(140+100)^{2}+100^{2}}=260$, so that

$$
\frac{d z}{d t}=\frac{(140+100)(35+25)}{260} \approx 55.38
$$

In conclusion, the distance between the Titanic and the iceberg is increasing at a rate of (approximately) $55.38 \mathrm{~km} / \mathrm{h}$ at $4 \mathrm{p} . \mathrm{m}$.
4. Differentiating both sides of $x^{2} y^{2}-6 y+2=0$ with respect to x gives

$$
2 x y^{2}+2 x^{2} y y^{\prime}-6 y^{\prime}=0,
$$

where $y^{\prime}=\frac{d y}{d x}$. We then solve for y^{\prime} to find $y^{\prime}\left(2 x^{2} y-6\right)=-2 x y^{2}$, or

$$
y^{\prime}=\frac{2 x y^{2}}{6-2 x^{2} y} .
$$

At the point $(x, y)=(2,1)$, the slope is $y^{\prime}=\frac{4}{6-8}=-2$. Thus, the equation for the tangent line at $(2,1)$ is given by

$$
y=-2(x-2)+1=-2 x+5
$$

5. If $f(x)=\sqrt[3]{x}$, then $L(x)=f^{\prime}(a)(x-a)+f(a)$ so with $a=27$ we get

$$
L(x)=\frac{1}{3}(27)^{-2 / 3}(x-27)+\sqrt[3]{27}=\frac{1}{27}(x-27)+3=\frac{x}{27}+2 .
$$

Thus, $f(28) \approx L(28)$ so that

$$
\sqrt[3]{28} \approx \frac{28}{27}+2=3 \frac{1}{27}
$$

6.

(a) To determine the intervals on which f is increasing and the intervals on which f is decreasing, we need to see when $f^{\prime}(x)$ is positive and when it is negative. Since $f^{\prime}(x)=0$ at $x=-1$ and $x=-3$, these are the only two critical points.
For $x<-3, f^{\prime}(x)>0$, so f is increasing.
For $-3<x<-1, f^{\prime}(x)<0$, so f is decreasing.
For $x>-1, f^{\prime}(x)>0$, so f is increasing.
(b) To give the x-coordinate of any points at which f has a local maximum, and the x-coordinate of any points at which f has a local minimum we need to consider the critical values. At $x=-3, f^{\prime}(x)$ switches from increasing to decreasing, so it is a local maximum. At $x=-1, f^{\prime}(x)$ switches from decreasing to increasing, so it is a local minimum. (This is the First Derivative Test.)
(c) To determine the intervals of which f is concave up and the intervals on which f is concave down, we need to see when $f^{\prime \prime}(x)$ is positive and when it is negative. If we set $f^{\prime \prime}(x)=0$ and solve for x, then

$$
e^{x}(x+3-\sqrt{2})(x+3+\sqrt{2})=0
$$

when $(x+3-\sqrt{2})=0$ or $(x+3+\sqrt{2})=0$; equivalently, $f^{\prime \prime}(x)=0$ when

$$
x=-3+\sqrt{2} \text { or } x=-3-\sqrt{2}
$$

since $e^{x}>0$ for all values of x. We can then determine the intervals of concavity.

	e^{x}	$x+3-\sqrt{2}$	$x+3+\sqrt{2}$	$f^{\prime \prime}(x)$	$f(x)$
$x<-3-\sqrt{2}$	+	-	-	+	CU
$-3-\sqrt{2}<x<-3+\sqrt{2}$	+	-	+	-	CD
$x>-3+\sqrt{2}$	+	+	+	+	CU

Therefore f is concave up for $x<-3-\sqrt{2}$ and for $x>-3+\sqrt{2} ; f$ is concave down for $-3-\sqrt{2}<x<-3+\sqrt{2}$.
(d) By the above, we see that f changes concavity at $x=-3-\sqrt{2}$ and $x=-3+\sqrt{2}$ and therefore, these are the inflection points of f. Note: It is not just enough to have $f^{\prime \prime}(x)=0$ at an inflection point; you must also check that the concavity changes signs around that point.

7.

By definition,

$$
f^{\prime}(0)=\lim _{x \rightarrow 0} \frac{f(x)-f(0)}{x-0}=\lim _{x \rightarrow 0} \frac{3 x^{2} \cos ^{2}(1 / x)-0}{x-0}=\lim _{x \rightarrow 0} 3 x \cos ^{2}(1 / x) .
$$

In order to compute this limit we must use the Squeeze Theorem. For all $\theta,-1 \leq \cos \theta \leq 1$. Thus, if $x \neq 0$,

$$
0 \leq \cos ^{2}(1 / x) \leq 1
$$

If $x>0$, then

$$
0 \leq 3 x \cos ^{2}(1 / x) \leq 3 x
$$

so that

$$
\lim _{x \rightarrow 0+} 3 x \cos ^{2}(1 / x)=0
$$

However, if $x<0$, then

$$
3 x \leq 3 x \cos ^{2}(1 / x) \leq 0
$$

so that

$$
\lim _{x \rightarrow 0-} 3 x \cos ^{2}(1 / x)=0
$$

As both the one-sided limits are equal, we conclude that

$$
f^{\prime}(0)=\lim _{x \rightarrow 0} 3 x \cos ^{2}(1 / x)=0,
$$

so that f is differentiable at 0 .

