
Math 111 Prelim #2 Solutions - July 21, 2003

1.

(a) f ′(x) = ex cos(ex − 1)− x√
x2 + 1

(b) f(x) =
x

2
ln(x), so f ′(x) = 1

2
ln x + 1

2
.

(c) f ′(x) = 0 since eπ − πe is a constant.

(d) f ′(x) =
2x sec2 x− 2x ln 2 tan x

22x
=

sec2 x− ln 2 tan x

2x

2.

(a) We can use the chain rule to compute the required derivatives. Thus,

dx

dt
= 4 · 3 cos2 t · (− sin t) = −12 sin t cos2 t

and
dy

dt
= 4 · 3 sin2 t · cos t = 12 cos t sin2 t.

(b) We can also use the chain rule to determine dy
dx

. Since

dy

dt
=

dy

dx

dx

dt

we can isolate dy
dx

so that

dy

dx
=

12 cos t sin2 t

−12 sin t cos2 t
= −cos t sin2 t

sin t cos2 t
.

Thus, when t = π/4, sin(π/4) = cos(π/4) = 1/
√

2 so that dy
dx

= −1.

(c) It is tempting to write that

dy

dx
= −cos t sin2 t

sin t cos2 t
= − sin t

cos t
.

However, this is not immediately true FOR ALL t, since we must check that we are not
dividing by 0. In order to justify this step, we must compute the limits as t approaches
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the values where the denominator is 0. Thus, if t = kπ for k ∈ Z so that sin t = 0,
then

lim
t→kπ

cos t sin2 t

sin t cos2 t
= lim

t→kπ

sin t

cos t
= 0.

Further, if t = kπ + π/2 for k ∈ Z so that cos t = 0, then

lim
t→kπ+π/2

cos t sin2 t

sin t cos2 t
= lim

t→kπ+π/2

sin t

cos t
DNE.

Thus, we see that dy
dx

does not exist when cos t = 0. There are two values of t with
0 ≤ t ≤ 2π for which this is true: t = π/2 and t = 3π/2.

The value t = π/2 corresponds to the point (4 cos3(π/2), 4 sin3(π/2)) = (0, 4).

The value t = 3π/2 corresponds to the point (4 cos3(3π/2), 4 sin3(3π/2)) = (0,−4).

Note carefully the wording on page 231 of Stewart.

3. Let x be the distance traveled by Titanic in t hours; let y be the distance traveled
by iceberg in t hours; and let z be the distance between Titanic and iceberg after t hours.
We know that dx

dt
= 35 km/h and dy

dt
= 25 km/h. Thus, we must find dz

dt
when t = 4. These

quantities are related by
(x + y)2 + 1002 = z2.

Taking derivatives with respect to time gives

2(x + y)(
dx

dt
+

dy

dt
) + 0 = 2z · dz

dt

dz

dt
=

(x + y)(dx
dt

+ dy
dt

)

z
.

Now, when t = 4, x = 35 · 4 = 140, y = 25 · 4 = 100, and z =
√

(140 + 100)2 + 1002 = 260,
so that

dz

dt
=

(140 + 100)(35 + 25)

260
≈ 55.38

In conclusion, the distance between the Titanic and the iceberg is increasing at a rate of
(approximately) 55.38 km/h at 4 p.m.

4. Differentiating both sides of x2y2 − 6y + 2 = 0 with respect to x gives

2xy2 + 2x2yy′ − 6y′ = 0,

where y′ = dy
dx

. We then solve for y′ to find y′(2x2y − 6) = −2xy2, or

y′ =
2xy2

6− 2x2y
.
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At the point (x, y) = (2, 1), the slope is y′ = 4
6−8

= −2. Thus, the equation for the tangent
line at (2, 1) is given by

y = −2(x− 2) + 1 = −2x + 5.

5. If f(x) = 3
√

x, then L(x) = f ′(a)(x− a) + f(a) so with a = 27 we get

L(x) =
1

3
(27)−2/3(x− 27) +

3
√

27 =
1

27
(x− 27) + 3 =

x

27
+ 2.

Thus, f(28) ≈ L(28) so that
3
√

28 ≈ 28

27
+ 2 = 3

1

27
.

6.

(a) To determine the intervals on which f is increasing and the intervals on which f
is decreasing, we need to see when f ′(x) is positive and when it is negative. Since
f ′(x) = 0 at x = −1 and x = −3, these are the only two critical points.

For x < −3, f ′(x) > 0, so f is increasing.

For −3 < x < −1, f ′(x) < 0, so f is decreasing.

For x > −1, f ′(x) > 0, so f is increasing.

(b) To give the x-coordinate of any points at which f has a local maximum, and the
x-coordinate of any points at which f has a local minimum we need to consider the
critical values. At x = −3, f ′(x) switches from increasing to decreasing, so it is a local
maximum. At x = −1, f ′(x) switches from decreasing to increasing, so it is a local
minimum. (This is the First Derivative Test.)

(c) To determine the intervals of which f is concave up and the intervals on which f is
concave down, we need to see when f ′′(x) is positive and when it is negative. If we set
f ′′(x) = 0 and solve for x, then

ex
(
x + 3−

√
2
) (

x + 3 +
√

2
)

= 0

when
(
x + 3−

√
2
)

= 0 or
(
x + 3 +

√
2
)

= 0; equivalently, f ′′(x) = 0 when

x = −3 +
√

2 or x = −3−
√

2

since ex > 0 for all values of x. We can then determine the intervals of concavity.
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ex x + 3−
√

2 x + 3 +
√

2 f ′′(x) f(x)

x < −3−
√

2 + − − + CU

−3−
√

2 < x < −3 +
√

2 + − + − CD

x > −3 +
√

2 + + + + CU

Therefore f is concave up for x < −3−
√

2 and for x > −3 +
√

2; f is concave down
for −3−

√
2 < x < −3 +

√
2.

(d) By the above, we see that f changes concavity at x = −3 −
√

2 and x = −3 +
√

2
and therefore, these are the inflection points of f . Note: It is not just enough to have
f ′′(x) = 0 at an inflection point; you must also check that the concavity changes signs
around that point.

7.

By definition,

f ′(0) = lim
x→0

f(x)− f(0)

x− 0
= lim

x→0

3x2 cos2(1/x)− 0

x− 0
= lim

x→0
3x cos2(1/x).

In order to compute this limit we must use the Squeeze Theorem. For all θ, −1 ≤ cos θ ≤ 1.
Thus, if x 6= 0,

0 ≤ cos2(1/x) ≤ 1.

If x > 0, then
0 ≤ 3x cos2(1/x) ≤ 3x,

so that
lim

x→0+
3x cos2(1/x) = 0.

However, if x < 0, then
3x ≤ 3x cos2(1/x) ≤ 0,

so that
lim

x→0−
3x cos2(1/x) = 0.

As both the one-sided limits are equal, we conclude that

f ′(0) = lim
x→0

3x cos2(1/x) = 0,

so that f is differentiable at 0.
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