Math 111.01 Summer 2003
In Class Exercise (June 27, 2003)
Example: Exercise \#1 on page 99. A tank holds 1000 gal of water which drains from the bottom in 30 minutes

after t min	5	10	15	20	25	30
vol V remaining	694	444	250	111	28	0

(a) If $P=(15,250)$ is on the graph of $V(t)$, find the slope of the secant lines $P Q$ when Q is the point $(t, V(t)), t=5,10,20,25,30$.

$$
\begin{aligned}
& (5,694), m=\frac{694-250}{5-15}=-44.4 \\
& (10,444), m=\frac{444-250}{10-15}=-38.8 \\
& (20,111), m=\frac{111-250}{20-15}=-27.8 \\
& (25,38), m=\frac{38-250}{25-15}=-22.2 \\
& (30,0), m=\frac{30-250}{0-15}=-14 . \overline{6}
\end{aligned}
$$

(b) Estimate the slope of the tangent line at P by averaging the slopes of the two adjacent secant lines.

> secant 1: $(10,444)$ to $(15,250):$ slope $=-38.8$
> secant 2: $(20,111)$ to $(15,250):$ slope $=-27.8$
average $=-33.3$
(c) Use a graph to estimate the slope of the tangent line at P.
(1) STAT \rightarrow 1:Edit (enter t in L_{1}, V in L_{2})
(2) 2nd [STAT PLOT] 1:Plot1. ENTER. Choose ON. ENTER.
(3) Set window $[5,30] \times[0,694]$.

