Math 111.01 Summer 2003 In Class Exercise (June 27, 2003)

Example: Exercise #1 on page 99. A tank holds 1000 gal of water which drains from the bottom in 30 minutes

after $t \min$	5	10	15	20	25	30
vol V remaining	694	444	250	111	28	0

(a) If P = (15, 250) is on the graph of V(t), find the slope of the secant lines PQ when Q is the point (t, V(t)), t = 5, 10, 20, 25, 30.

$(5,694), m = \frac{694 - 250}{5 - 15} = -44.4$
$(10, 444), m = \frac{444 - 250}{10 - 15} = -38.8$
$(20, 111), m = \frac{111 - 250}{20 - 15} = -27.8$
$(25,38), m = \frac{38 - 250}{25 - 15} = -22.2$
$(30,0), m = \frac{30 - 250}{0 - 15} = -14.\overline{6}$

(b) Estimate the slope of the tangent line at P by averaging the slopes of the two adjacent secant lines.

secant 1: (10, 444) to (15, 250): slope = -38.8secant 2: (20, 111) to (15, 250): slope = -27.8

average = -33.3

- (c) Use a graph to estimate the slope of the tangent line at P.
 - (1) STAT \rightarrow 1:Edit (enter t in L_1 , V in L_2)
 - (2) 2nd [STAT PLOT] 1:Plot1. ENTER. Choose ON. ENTER.
 - (3) Set window $[5, 30] \times [0, 694]$.